A Review on Phishing URL Detection using Machine Learning Systems

Gangeshwari Sharma
gangeshwarisharma@gmail.com

Abhishek Tiwari
abhi.tiwari23@gmail.com

Abstract – Seeking sensitive user data in the form of online banking user-id and passwords or credit card information, which may then be used by 'phishers' for their own personal gain is the primary objective of the phishing e-mails. With the increase in the online trading activities, there has been a phenomenal increase in the phishing scams which have now started achieving monstrous proportions. This paper gives a review on the strategies for distinguishing phishing sites by dissecting different components of phishing URLs by Machine learning systems.

Keywords – Phishing URL, Machine learning systems, trading.

I. INTRODUCTION

A Phishing is an attempt by an individual or a group to steal personal confidential information such as passwords, credit card information from unsuspecting victims for identity theft, financial gain and other fraudulent activities. In the current scenario, when the end user wants to access his confidential information online (in the form of money transfer or payment gateway) by logging into his bank account or secure mail account, the person enters information like username, password, credit card no. etc. on the login page. But quite often, this information can be captured by attackers using phishing techniques (for instance, a phishing website can collect the login information the user enters and redirect him to the original site). There is no such information that cannot be directly obtained from the user at the time of his login input.

Whittaker et al. [17] define a phishing web page as “any web page that, without permission, alleges to act on behalf of a third party with the intention of confusing viewers into performing an action with which the viewers would only trust a true agent of a the third party.” This definition, which is similar to the definition of “web forgery”, covers a wide range of phishing pages from typical ones – displaying graphics relating to a financial company and requesting a viewer’s personal credentials – to sites which claim to be able to perform actions through a third party once provided with the viewer’s login credentials. Thus, a phishing URL is a URL that leads user to a phishing web page. Our study, by this definition, is therefore independent of the attack vector by which a phishing URL is distributed.

II. PHISHING

Phishing is a generally new internet crime in correlation with different forms such as hacking and virus attacks. A large number of phishing website pages have been found as of late in an accelerative way. Its effect is the rupture of data security through the trade-off of private information and the casualties might at long last endure misfortunes of cash or different sorts. A phishing site as demonstrated in Figure 1 is an extensively dispatched social engineering attack that endeavours to cheat individuals of their own data including Visa number, bank account data, standardized savings number, and their own certifications with a specific end goal to utilize these points of interest falsely against them. Phishing has a tremendous negative effect on associations’ incomes, client connections, advertising endeavours, and general corporate picture. Phishing attacks can cost organizations keep an eye on a huge number of money per attack in fraud-related misfortunes and personnel time. Far more terrible, expenses connected with the degradation of brand image and consumer confidence can keep running into a huge number of dollars.

Figure 1: Screenshot of a phishing website

There are many definitions of phishing website; we want to be very careful how we define the term, since it is constantly evolving. One of these definitions comes according to the Anti-Phishing Working Group (APWG)’s definition (APWG,
2005), "Phishing attacks use both social engineering and technical subterfuge to steal consumers’ personal identity data and financial account credentials". Typically a phishing attack is a combination of fraudulent emails, spoofed websites, and identity theft. Internet users or customers of many banks and financial institutions are the targets of phishing attacks. Nevertheless, there are a lot of definitions of a phishing website from different perspectives. Hereunder we mention some of these definitions to get better understanding of its features and attack tactics.

Phishing web pages are forged web pages that are created by malicious people to mimic Web pages of real web sites. Most of these kinds of web pages have high visual similarities to scam their victims. Some of these kinds of web pages look exactly like the real ones. Victims of phishing web pages may expose their bank account, password, credit card number, or other important information to the phishing web page owners. It includes techniques such as tricking customers through email and spam messages, man in the middle attacks, installation of key loggers and screen captures.

These popular technologies have several drawbacks:

- Blacklist-based technique with low false alarm probability, but it cannot detect the websites that are not in the blacklist database. Because the life cycle of phishing websites is too short and the establishment of blacklist has a long lag time, the accuracy of blacklist is not too high.
- Heuristic-based anti-phishing technique, with a high probability of false and failed alarm, and it is easy for the attacker to use technical means to avoid the heuristic characteristics detection.
- Similarity assessment based technique is time-consuming. It needs too long time to calculate a pair of pages, so using the method to detect phishing websites on the client terminal is not suitable. And there is low accuracy rate for this method depends on many factors, such as the text, images, and similarity measurement technique. However, this technique (in particular, image similarity identification technique) is not perfect enough yet.

III. LITERATURE REVIEW

Dhamija and Tygar’s (2005) approach involves the use of a so-called dynamic security skin on the user’s browser [1]. This technique uses a shared secret image that allows a remote server to prove its identity to a user in a way that supports easy verification by humans but which is difficult for the phishers to spoof. The disadvantage of this approach is that it requires effort by the user. That is, the user needs to be aware of the phishing threat and check for signs that the site he/she is visiting is being spoofed. The proposal approach requires changes to the entire web infrastructure (both servers and clients), so it can succeed only if the entire industry supports it. Also, this technique does not provide security for situations where the user login is from a public terminal. More recently, Dhamija et al. (2006) analyzed 200 phishing attacks from the Anti-Phishing Work Group database and identified several factors, ranging from pure lack of computer system knowledge, to visual deception tricks used by adversaries, due to which users fall for phishing attacks [2]. They further conducted a usability study with 22 participants. The participants were asked to study 20 different websites to see if they could tell whether they were fraudulent or authentic. The result of this study showed that age, sex and computer habits didn’t make much difference. They even noticed that pop-up warnings of invalid signature of the sites and visual signs of SSL (Secure Sockets Layer), padlocks etc. were very inefficient and were overlooked. They found that 23% of the participants failed to look at security indicators warning about phishing attacks and, as a result, 40% of the time they were susceptible to a phishing attack. Based on their analysis, the authors suggest that it is important to re-think the design of security systems, particularly by taking usability issues into consideration. Wu et al. (2006) proposed methods that require web page creators to follow certain rules to create web pages, by adding sensitive information location attributes to HTML code [3]. However, it is difficult to persuade all web page creators to follow the rules.

Liu et al. (2005) analyzed and compared legitimate and phishing web pages to define metrics that can be used to detect a phishing page on visual similarity (i.e. block level similarity, layout similarity and overall style similarity) [4]. The DOM -based (Wood, 2005) visual similarity of web pages is oriented, and the concept of visual approach to phishing detection was first introduced [5]. Through this approach, a phishing web page can be detected and reported in an automatic way rather than involving too many human efforts. Their method first decomposes the web pages (in HTML) into salient (visually distinguishable) block regions. The visual similarity between two web pages is then evaluated in three metrics: block level similarity, layout similarity, and overall style similarity, which
are based on the matching of the salient block regions. A web page is classified as a phishing page if its visual similarity value is above a predefined threshold. Fu et al. (2006) proposed a phishing web page detection method using the EMD-based visual similarity assessment [6]. This approach works at the pixel level of web pages rather than at the text level, which can detect phishing web pages only if they are “visually similar” to the protected ones without considering the similarity of the source codes.

The phishing filter in IE8 is a toolbar approach with more features such as blocking the user’s activity on a detected phishing site. The most popular and widely-deployed techniques, however, are based on the use of blacklists of phishing domains that the browser refuses to visit. For example, Microsoft has recently integrated a blacklist based anti-phishing solution into its Internet Explorer (IE8). The browser queries lists of blacklisted and whitelisted domains from Microsoft servers and makes sure that the user is not accessing any phishing sites. Microsoft’s solution is also known to use some heuristics to detect phishing symptoms in web pages (Sharif, 2005). Obviously, to date, the company has not released any detailed public information on how its anti-phishing techniques function [7].

Chandrasekaran et al. (2006) proposed an approach to classify phishing based on phishing emails’ structural properties. 25 features, comprising style markers (e.g. the words suspended, account, and security) and structural attributes, such as the structure of the subject line of the email and the structure of the greeting in the body, were used in the study. 200 emails (100 phishing and 100 legitimate) were tested. Simulated annealing was applied as an algorithm for feature selection. After a feature set was chosen, information gain (IG) was used to rank these features based on their relevance. Thus, they applied one-class SVM to classify phishing emails based on the selected features. The results demonstrated a detection rate of 95% of phishing emails with a low [8].

Fette et al. (2007) compared a number of commonly-used learning methods through their performance in phishing detection on a past phishing data set, and finally Random Forests were implemented in their algorithm PILFER. The authors claim that the methods can be used in the detection of phishing websites as well. 860 phishing emails and 6950 legitimate emails were tested. The proposed method correctly detected 96% of the phishing emails with a false positive rate of 0.1%. Ten handpicked features were selected for training using a phishing dataset that was collected in 2002 and 2003. As pointed out by the authors themselves, their implementation is not optimal and further work in this area is warranted [9].

Abu-Nimeh et al. (2007) compared six machine-learning techniques to classify phishing emails. Their phishing corpus consisted of a total of 2889 emails and they used 43 features (variables). They used a bag-of-words as their feature set and the results demonstrated that merely using a spam detection mechanism, i.e. bag-of-words only, achieves high predictive accuracy. However, relying on textual features results in high false positive rates, as phishing emails are very similar to legitimate ones. The studied classifiers could successfully predict more than 92% of the phishing emails [10].

Pan and Ding (2006) examined the anomalies in web pages, in particular, the discrepancy between a web site’s identity and its structural features and HTTP transactions [11]. Herzberg and Gbara (2004) proposed a solution to combine the technique of standard certificates with a visual indication of correct certification; a site-dependent logo indicating that the certificate was valid would be displayed in a trusted credentials area of the browser [12]. Another approach detects certain common attack instances, such as attacks in which the images are supplied from one domain while the text resides with another domain, and attacks corresponding to misspellings of URLs of common targets.

“The Phishing Guide” by Ollmann (2004) gives a detailed understanding of the different techniques often included in phishing attacks [13]. The phenomenon that started as simple emails persuading the receiver to reply with the information the attacker required has evolved into more advanced ways to deceive the victim. Links in email and false advertisements sends the victim to more and more advanced fraudulent websites designed to persuade the victim to type in the information the attacker wants, for example to log into the fraudulent site mimicking the company’s original. Ollmann also presents different ways to check whether websites are fraudulent or not. Apart from inspecting whether the visited site really is secure through SSL (Secure Sockets Layer), the user should also check that the certificate added to the website really is from the company it claims to be from and that it is signed by a trusted third party. Focusing more attention on the URL can also often reveal fraudulent sites. There are a number of ways for the attackers to manipulate the URL to look like the original, and if the users are aware of this they can more easily check the authentication of the visited site. Watson et al. (2005) describe in their White Paper, “Know your enemy: Phishing”, different real-world phishing
attacks collected in German and United Kingdom honeynets [14]. Honeynets are open computer networks designed to collect information about different attacks out in the real world, for further forensic analysis. They noticed that phishing attacks using vulnerable web servers as hosts for predesigned phishing sites are by far the most common, compared to using self-compiled servers. A compromised server is often host for several different phishing sites. These sites are often only active for a few hours or days after being downloaded to the server.

Garera et al. [15] focus on studying the structure of URLs employed in various phishing attacks. They find that it is often possible to tell whether or not a URL belongs to a phishing attack without requiring any knowledge of the corresponding page data. This paper describe several features that can be used to distinguish a phishing URL from a benign one. These features are used to model a logistic regression filter that is efficient and has a high accuracy. The paper use this filter to perform thorough measurements on several million URLs and quantify the prevalence of phishing on the Internet today [15].

Ma et al. [16] propose a method to classify malicious URLs using variable number of lexical and host-based properties of the URLs. They describe an approach for problem based on automated URL classification, using statistical methods to discover the tell-tale lexical and host-based properties of malicious Web site URLs. These methods are able to learn highly predictive models by extracting and automatically analyzing tens of thousands of features potentially indicative of suspicious URLs. The resulting classifiers obtain 95-99% accuracy, detecting large numbers of malicious Web sites from their URLs, with only modest false positives [16].

Whittaker et al. [17] describe the design and performance characteristics of a scalable machine learning classifier that has been used in maintaining Google’s phishing blacklist automatically. Their proprietary classifier analyzes millions of pages a day, examining the URL and the contents of a page to determine whether or not a page is phishing. Their system classifies web pages submitted by end users and URLs collected from Gmail’s spam filters. Though some URL based features are similar, we propose several new features and evaluate our approach with publicly available machine learning algorithms and public data sets. Unlike their approach, we do not use any proprietary and page content based features.

Zhang et al. [18] present CANTINA, content-based approach to detect phishing websites, based on the TF-IDF information retrieval algorithm and the Robust Hyperlinks algorithm. By using a weighted sum of 8 features (4 content related, 3 lexical, and 1 WHOIS-related) they show that CANTINA can correctly detect approximately 95% of phishing sites. The goal of our approach is to avoid downloading the actual web pages and thus reduce the potential risk of analyzing the malicious content on user’s system. In order to achieve this goal, we evaluate only the features related to URLs.

A number of machine learning-based studies can be found in related contexts such as in detecting phishing emails. Fette et al. [19] use a set of 10 features extracted from email headers, WHOIS information on sender’s domain, email contents, URL structures, etc. and apply Support Vector Machines (SVMs) to classify phishing emails from legitimate ham emails. We further improve the accuracy of Fette et al. by introducing groups of keyword based features from the email contents [20]. Using different classification models we achieve classification accuracy of 98%, while maintaining low false positive and negative rates. Fette et al. [19] hypothesized that phishing email classification appears to be simple text classification problem but, the classification is confounded by the fact that the class of “phishing” emails is nearly identical to the class of real emails. Motivated by the hypothesis, we base the phishing email classification problem as the text classification problem in our previous work [21]. Using Confidence Weighted linear classifier, an online algorithm, and using only the email text contents as “bag-of-words” representation, we achieve a classification accuracy of 99%, maintaining false positive and false negative rates of less than 1% on public benchmark data sets. Besides machine learning (ML) based techniques, there exist many other approaches in phishing detection. Perhaps, the most widely used anti-phishing technology is the URL blacklist technique that most modern browsers are equipped with [22] and [23]. Other popular methods are browser based plug-in or add-in toolbars. SpoofGuard [24] uses domain name, URL, link, and images to evaluate the spoof probability on a webpage. The plug-in applies a series of tests, each resulting in a number in the range from 0 to 1. The total score is a weighted average of the individual test results. There has been an attempt to detect phishing attack using user generated rules [25]. Other anti-phishing tools include SpoofStick [26], SiteAdvisor [27], Netcraft anti-phishing toolbar [28], AVG Security Toolbar [29], etc.
IV. CONCLUSION

Carrying out literature review is very significant in any research project. It clearly establishes the need of the work and the background development. It generates related queries regarding improvements in the study already done and allows unsolved problems to emerge and thus clearly define all boundaries regarding the development of the research project. Phishing websites are a recent problem. Nevertheless, due to their huge impact on the financial and on-line retailing sectors and since preventing such attacks is an important step towards defending against website phishing attacks, there are several promising approaches to this problem and a comprehensive collection of related works. In this paper, plenty of literature has been reviewed in connection with existing anti-phishing solutions and the significantly related ones have been discussed.

REFERENCE

[28] Netcraft Anti-Phishing Toolbar, Online available at: http://toolbar.netcraft.com