
IJDACR

 ISSN: 2319-4863

International Journal of Digital Application & Contemporary Research

Website: www.ijdacr.com (Volume 4, Issue 1, August 2015)

Polynomial Based Mastrovito Multipliers for FFT

Applications for Secure Data Encryption and Decryption

Swarnim Baghel

M. Tech Scholar

Department of Electronics and Communication

Gyan Ganga Institute of Technology and Science,

Jabalpur (M.P.), INDIA

RGPV University, Bhopal (M.P.)

swarnim.baghel@gmail.com

Sunil Shah

Asst. Professor

Department of Electronics and Communication

Gyan Ganga Institute of Technology and Science,

Jabalpur (M.P.), INDIA

RGPV University, Bhopal (M.P.)

sunilshah@ggits.org

Abstract- At present scenario Polynomial groundwork

multipliers re used for the reason that they're fairly simple to

design, and offer scalability for the fields of bigger orders. It's

used in Cryptographic and FFT purposes for at ease

knowledge encryption and decryption which deals with

discrete constitution and mathematical arithmetic. In view

that it makes use of modular arithmetic operation, it's

observed that it has the latency of m cycles. To beat this

problem, an effective low latency polynomial multiplier for

speedy Fourier transform (FFT) algorithm which is based on

Mastrovito structure has been developed. This multiplier

makes use of the notion of parallel processing in which

multiplication is decomposed into number of impartial models

and “pre-computed addition” systems. Our design has been

implemented in VHDL, simulated and synthesized utilizing

the Xilinx ISE Design Suite 13.2 device for supply voltage

levels from 1.2V to 2.5 V. The multiplier is analyzed in terms

of pace, subject overhead and reminiscence. The design

includes significantly less prolong and field overhead

complexities than the present structure.

Keywords: FFT, Mastrovito, VHDL, Polynomial basis.

I. INTRODUCTION

on this work, our goal is to build a scalable Bernard Law

Montgomery modular multiplier centered on irreducible

polynomial for speedy Fourier become (FFT) functions.

The FPGA code is written in very excessive velocity

hardware description language (VHDL) after which

synthesized and carried out using Xilinx FPGA

contraptions, and we when compared the outcome of

Modified booth situated modular multiplier with array,

Wallace tree and sales space multiplier.

A. CRYPTOGRAPHY /FFT APPLICATIONS

 Cryptography is the artwork of designing and breaking

ciphers. Almost always, secret–key.

Cryptography used to be utilized by the army and

diplomatic services for providing secure verbal exchange,

where two speaking events share a secret key that will have

to be dispensed in some relaxed means. Progress of cell

internet instruments increased the need for fast Fourier turn

into techniques for privacy and authentication of digital

data. The invention of public–key cryptography, which

assigns two keys (one public and one exclusive) to each and

every person, offered approaches for key distribution as

well as signing and authenticating digital information. In

view that of its complexity, public–key cryptography is

usually used for digital signatures and the management of

secret keys between two aspects. The encryption of bulk

data is as a rule headquartered with secret–key

cryptosystems, whereas the secret keys to be shared for a

pair of users are dispensed by means of public–key

cryptosystems. For a standard public–key cryptosystem to

be viewed as “secure”, the key length must be about

thousand bits or more. [1, 2, 3] .In public–key

cryptography, input and output numbers are selected from

finite aspect fields. All fast Fourier grow to be operations

are made in these finite fields, which map to modular

multiplication and modular exponentiations within the

digital world. Growing demand for modular multiplication

requires rapid modular multiplication algorithms

comparable to CSE and modified sales space founded

modular multiplication, in order to be described absolutely

in this paper.

In the context of speedy Fourier develop into algorithms, a

butterfly is a component to the computation that mixes the

results of smaller discrete Fourier transforms (DFTs) right

into a greater DFT, or vice versa (breaking a larger DFT up

into sub transforms). The name "butterfly" comes from the

form of the info-float diagram in the radix-2 case, as

described below:

mailto:swarnim.baghel@gmail.com
mailto:sunilshah@ggits.org

IJDACR

 ISSN: 2319-4863

International Journal of Digital Application & Contemporary Research

Website: www.ijdacr.com (Volume 4, Issue 1, August 2015)

Figure 1: Architecture of 2 point-FFT

Program substitution:

product_1 <= (y_r*w_r) - (y_i*w_i);

product_2 <= (y_r*w_i) + (y_i*w_r);

A_r <= x_r + product_1(7 downto 0);

A_i <= x_i + product_2 (7 downto 0);

B_r <= x_r - product_1 (7 downto 0);

B_i <= x_i - product_2 (7 downto 0);

Substitute ‘1’ for all the values:

Product_1<= (1*1)-(1*1) ;=> 0

Product_2<= (1*1) + (1*1) ;=> 2

A_r<=1+0 ;=> 1

A_i<=1+2 ;=> 3

B_r<=1-0 ;=> 1

B_i<=1-2=> -1

(Compare the values with the simulation window)

Method and diagram shown above is the base architecture

of the butterfly structure.

II. RELATED WORK

Software substitution:

product_1 <= (y_r*w_r) - (y_i*w_i);

product_2 <= (y_r*w_i) + (y_i*w_r);

A_r <= x_r + product_1(7 downto 0);

A_i <= x_i + product_2 (7 downto zero);

B_r <= x_r - product_1 (7 downto 0);

B_i <= x_i - product_2 (7 downto zero);

alternative ‘1’ for all the values:

Product_1<= (1*1)-(1*1) ;=> 0

Product_2<= (1*1) + (1*1) ;=> 2

A_r<=1+0 ;=> 1

A_i<=1+2 ;=> 3

B_r<=1-0 ;=> 1

B_i<=1-2=> -1

(examine the values with the simulation window)

approach and diagram proven above is the bottom structure

of the butterfly structure.

III. RELATED WORK

In this work, we take into account detection of blunders in

polynomial, twin, and normal bases arithmetic operations.

Error detection is carried out by way of re computing with

the shifted operand process, while the operation unit is in

use. This scheme is efficient for pipelined architectures,

primarily systolic arrays. Additionally, one semi systolic

multiplier for every of the polynomial, dual, style I, and

kind II optimal traditional bases is offered [7].

Finite fields were used for countless functions together with

error-control coding and cryptography. The design of

effective multipliers, dividers, and exponentiators for finite

field arithmetic is of pleasant realistic trouble. We explore

and classify algorithms for finite field multiplication,

squaring, and exponentiation into least significant bit first

(LSB- first) scheme and most significant bit first (MSB-

first) scheme, and put into effect these algorithms using

semi-systolic arrays. For finite field multiplication and

exponentiation, LSB-first algorithms are extra efficient as

their normal cells have much less critical route computation

time. An extra knowledge of LSB-first scheme is its

capacity of attaining substructure sharing amongst multiple

operations, which could result in financial savings in

hardware when these arithmetic units are used as building

blocks for a large approach [9].

Fault-centered cryptanalysis has been developed to

comfortably destroy both private-key and public-key

cryptosystems, making amazing finite discipline

multiplication an awfully foremost research subject in latest

years. As a result, this investigation presents a semi systolic

Gaussian ordinary basis multiplier. Headquartered on the

proposed Gaussian natural basis multiplier, both concurrent

error detection and correction capabilities can be easily

completed utilizing time redundancy technological know-

how and not using a hardware amendment. This be taught

builds a semi systolic variety-t GNB multiplier over GF

(2M). No systolic array architecture for GNB multiplier has

been located in the literature. The proposed semi systolic

GNB multiplier is suitable for VLSI chip implementation.

The proposed semi systolic GNB multiplier saves about 6

percent area complexity and 27 percentage time complexity

when in comparison with present systolic foremost natural

foundation multipliers of variety 2. The proposed GNB

multiplier may also be modified to a multiplier with

concurrent error detection and correction without a

IJDACR

 ISSN: 2319-4863

International Journal of Digital Application & Contemporary Research

Website: www.ijdacr.com (Volume 4, Issue 1, August 2015)

hardware change of the systolic array itself. The proposed

GNB multiplier with concurrent error detection most

effective has zero.6 percent more space and 1 percent more

time complexity than the proposed multiplier without

concurrent error detection for the case of m ¼ 233 and t ¼

2, and presents equality checkers [7].

Multiplication and squaring are most important finite

subject operations in quick Fourier develop into

computations and designing efficient multipliers and

squares influence the efficiency of cryptosystems. We

don't forget the CSE situated Montgomery multiplication in

the binary extension fields and study special structures of

bit-serial and bit-parallel multipliers. For each of those

constructions, we learn the role of the 1st viscount

montgomery of alamein aspect, and then by using utilizing

correct motives, advocate new architectures. Above all, we

propose two bit-serial multipliers for general irreducible

polynomials, and then derive bit-parallel Sir Bernard Law

multipliers for 2 most important courses of irreducible

polynomials. On this regard, first we keep in mind

trinomials and provide a method for locating effective 1st

viscount montgomery of alamein reasons which outcome in

a low time complexity. Then, we don't forget style-II

irreducible pentanomials and design two bit-parallel

multipliers which might be similar to the satisfactory finite

subject multipliers said within the literature. Furthermore,

we remember squaring making use of this family of

irreducible polynomials and show that this operation can be

carried out very rapid with the time complexity of two

XOR gates [6].

On this paper, an efficient digit-serial systolic array is

proposed for multiplication in finite field utilizing the

regular foundation illustration. From the least significant bit

first multiplication algorithm, we obtain a brand new

dependence graph and de signal an efficient digit-serial

systolic multiplier. If input information are available

consistently, the proposed array can produce multiplication

outcome at a price of 1 each clock cycles, the place is the

selected digit measurement. Evaluation indicates that the

computational extend time is significantly much less.

Furthermore, due to the fact the brand new structure has the

facets of regularity, modularity, and unidirectional

knowledge flow, its good proper to VLSI implementation

[5].

IV. PRESENT MODIFIED BOOTH MULTIPLIER ON FFT

A different development in the multiplier is by way of

lowering the quantity of partial merchandise generated. The

booth recording multiplier is one such multiplier; it scans

the three bits at a time to lower the quantity of partial

merchandise. These three bits are: the two bit from the

present pair; and a third bit from the high order bit of an

adjoining minimize order pair. After analyzing each triplet

of bits, the triplets are changed with the aid of booth good

judgment into a set of 5 manipulate signals utilized by the

adder cells in the array to control the operations performed

by way of the adder cells.[10,11,2]

To velocity up the multiplication sales space encoding

performs a few steps of multiplication at once. Sales

space’s algorithm takes knowledge of the truth that an

adder subtractor is practically as quick and small as a

simple adder. From the fundamentals of sales space

Multiplication it may be proved that the

addition/subtraction operation can also be skipped if the

successive bits within the multiplicand are equal. If three

consecutive bits are same then addition/subtraction

operation may also be skipped. Thus in many of the

instances the lengthen associated with booth Multiplication

are smaller than that with Array Multiplier. Nevertheless

the performance of sales space Multiplier for extend is

input information dependant. Within the worst case the

lengthen with booth multiplier is on per with Array

Multiplier. The system of sales space recording reduces the

numbers of adders and hence the extend required to provide

the partial sums with the aid of analyzing three bits at a

time. The excessive performance of sales space multiplier

comes with the hindrance of Power consumption. The

intent is enormous quantity of adder cells required that

consumes giant energy.

..

TABLE I COMPARISON BETWEEN MULTIPLIERS

Within the present architecture FFT architecture is

computed centered on array multipliers because the area

IJDACR

 ISSN: 2319-4863

International Journal of Digital Application & Contemporary Research

Website: www.ijdacr.com (Volume 4, Issue 1, August 2015)

and latency of the present approach has improved due the

architectural complexity of the multipliers. The Wallace

tree multiplier is noticeably turbo than a easy array

multiplier on the grounds that its peak is logarithmic in

word size, not linear. However, furthermore to the

tremendous number of adders required, the Wallace tree’s

wiring is much much less typical and extra tricky. For this

reason, Wallace bushes are usually refrained from with the

aid of designers, at the same time design complexity is a

trouble to them. So, so as the curb the demerits of the

existing process we've got proposed two ways.[13,14]

V. THE PROPOSED ARCHITECTURE

A. XOR-SHIFTING Multiplier

 Common digit patterns

 F1 = 7*X = (0111)*X = X + X<<1 + X<<2

 F2 = 13*X = (1101)*X = X + X<<2 + X<<3

In order to reduce the draw backs of Bit Shifting based

Multiplier: Such as area overhead and computational timing

we have gone for another method which has described

below.

B. Modified XOR-Shifting multiplier

 Radix-4 sales space Multiplier was excellent

Multiplier amongst all with less power consumption

and suitable field delay alternate-off. On this sales space

multiplier technique is to increase pace by means of

decreasing the quantity of partial merchandise by way of

half of. On account that an eight -bit sales space multiplier

is used on this mission, so there are only 4 partial

merchandise that need to be delivered as an alternative

of eight partial merchandise generated using

conventional multiplier.

Figure 2 Architecture of Booth Structure

Commonly if we multiply Eight*eight we can get eight

rows of partial product but in the above structure we have

now minimize 8 rows of partial merchandise into four rows

i.e. rows are diminished 1/2, which helps to slash the

complexity of the architecture. The proposed structure has

implemented on FFT and outcome evaluation of the above

method has given below

3) Polynomial based Mastrovito multiplier on Galois Field

 An effective algorithm for the multiplication in GF

(2m) was presented by way of Mastrovito. The space

complexity of the Mastrovito multiplier for the irreducible

trinomial trinomial x m + x n +1, Set of XOR, AND gates.

Nevertheless XOR gates are ample when the generating

trinomial is of the shape trinomial equations. We

 1 0 0 1 0 1 0 1 -107

(INPUT-

A)

 × 0 1 1 0 1 0 0 1 105

(INPUT-

B)

1 1 1 1 1 1 1 1 1 0 0 1 0 1 0 1 1 × Y

 0 0 0 0 0 0 1 1 0 1 0 1 1 0 -2 × Y

 0 0 0 0 0 1 1 0 1 0 1 1 -1 × Y

PARTIAL

PRODUCTS

0 1 0 0 1 0 1 0 1 0
2 × Y

 1 1 0 1 0 1 0 0 0 0 0 1 1 1 0 1 -11235

IJDACR

 ISSN: 2319-4863

International Journal of Digital Application & Contemporary Research

Website: www.ijdacr.com (Volume 4, Issue 1, August 2015)

additionally calculate the time complexity of the proposed

astrovito multiplier, and give design examples for the

irreducible trinomials x 7 + x 4 + 1 and x 6 + x three

+1.Mastrovito multiplier is a category of parallel

multipliers over Galois fields founded on polynomial basis

representations. The polynomial groundwork of GF(pm) is

given as a vector (βm-1,βm-2, …, β0) . As an illustration,

remember a Galois discipline GF (28) received by way of

an irreducible polynomial IP(x)=x8+x4+x3+x+1. When

IP(β)=zero, a vector (β7, β6, …, β0) is a polynomial basis.

Determine 1 shows the structure of Mastrovito multipliers

handled in GF-ACG, which includes Matrix generator and

Matrix operator. The Matrix generator first generates a

matrix decided through a reminder which is given by way

of the division of multiplicand via polynomial foundation.

The Matrix operator then performs the

multiplication of the multiplier (i.e., a further input) and the

generated matrix and sooner or later produces the product.

Such Mastrovito

Multiplier is known as a GF parallel multiplier with the

minimal subject rate.

Figure 3 Architecture of a Mastrovito multiplier

VI. RESULT ANALYSIS

The highest speed will also be performed with the new

architecture in designated configuration. The minimal

complete time wanted for an 8bit 1st viscount Montgomery

of product sinks beneath 2µs in configuration the place w is

high. Regrettably this doesn't always imply that the design

is prime over slightly serial design in every case. The

subject consumption increases dramatically with the word

size. So as make a valid assertion concerning the efficiency

of a configuration, the time× subject product wants to be

evaluated for every configuration. The proposed multiplier

and its corresponding blocks are described making use of

structural VHDL and synthesized using Xilinx Synthesis

instrument (XST), net percent variant 13.2.The

implementation was exact to Xilinx spartan-6 low energy,

selected device: 6vlx75tlff484-1l the logical routing may

also be discovered from the bought location and route result

from the FPGA Editor alternative in Xilinx synthesizer. It is

located that about 38% area for the certain FPGA is

blanketed for the implementation of this system. The

CLB’s are connected in cascade manner to receive the

functionality for the designed method. To ensure that the

hardware implementation works appropriately, simulation

experiment used to be performed utilising I-Sim

B. Influence of the Proposed go with the flow on height

memory usage, Timing and subject.

 In this paper, the traditional procedure and the proposed

process are analyzed founded on the price function of

placer and router. As proven within the (As proven within

the figures which is listed in the paper) the number of

LUT’s, memory utilization and timing are reduced in

proposed float due to less consumption of adder circuit

within the design.

The routed structure of the conventional and proposed

approach on Xilinx spartan-6 low Power, selected gadget:

6slx9ltqg144-1l is used and indicates the proposed method

outperforms the traditional architecture indicates that the

proposed process increased the combinational direction

delay when in comparison with conventional approach, In

terms of overhead, due to the fact the traditional approach

and the proposed approach only trade the position and

routing of the design, because the utilization of the CLB

(configurable logic blocks) varies which supplies the

overhead and delay lesser than present process. Moreover,

no unreachable CLBs are stated via the fashioned process

and the proposed procedure which helps to overcome the

hindrance of the common approach. For this reason, the

conventional technique and the proposed system preserve

CLB overhead. [15, 16]

IJDACR

 ISSN: 2319-4863

International Journal of Digital Application & Contemporary Research

Website: www.ijdacr.com (Volume 4, Issue 1, August 2015)

Figure 4 Simulation Results of XOR-SHIFTING

Multiplier on FFT.

Primitive and Black Box Usage:

BELS : 2883

GND : 1

LUT1 : 12

LUT2 : 658

LUT3 : 412

LUT4 : 526

LUT5 : 38

LUT6 : 54

MUXCY : 561

VCC : 1

XORCY : 620

IO Buffers : 176

IBUF : 168

OBUF : 8

Device utilization summary:

Selected Device: 6vlx75tlff484-1l

 Slice Logic Utilization:

 Number of Slice LUTs: 1700 out of 46560 3%

 Number used as Logic: 1700 out of 46560 3%

Figure 5 Area Analysis of XOR-SHIFTING Multiplier

on FFT.

IO Utilization:

Number of IOs: 200

Number of bonded IOBs: 176 out of 240 73%

--

 Total Delay 12.837ns (2.627ns logic,

10.210ns route (20.5% logic, 79.5% route)

==

===============================

Total memory usage is 273216 kilobytes

Figure 6 Timing/Memory Analysis of XOR-SHIFTING

Multiplier on FFT.

Figure 7 Simulation Results of XOR-SHIFT based

Booth based Multiplier on FFT.

Primitive and Black Box Usage:

BELS : 2520

GND : 1

INV : 528

LUT2 : 193

LUT3 : 382

LUT4 : 321

LUT5 : 532

LUT6 : 292

MUXCY : 126

VCC : 1

IJDACR

 ISSN: 2319-4863

International Journal of Digital Application & Contemporary Research

Website: www.ijdacr.com (Volume 4, Issue 1, August 2015)

XORCY : 144

Flip-flops/Latches : 1320

LD : 880

LDC : 440

Clock Buffers : 16

BUFG : 16

IO Buffers : 176

IBUF : 168

OBUF : 8

Device utilization summary:

Selected Device: 6vlx75tlff484-1l

Slice Logic Utilization:

 Number of Slice Registers: 1320 out of 93120 1%

 Number of Slice LUTs: 2248 out of 46560 4%

 Number used as Logic: 2248 out of 46560 4%

Figure 8 Area Analysis of XOR-SHIFT based Booth

based Multiplier on FFT

Specific Feature Utilization:

Number of BUFG/BUFGCTRLs: 16 out of 32 50%

Total memory usage is 271488 kilobytes

Total delay 1.156ns (0.352ns logic, 0.804ns

route) (30.4% logic, 69.6% route)

Figure 9 Timing/memory Analysis of XOR-SHIFT

based Booth based Multiplier on FFT.

Cell Usage:

BELS : 1562

GND : 1

LUT2 : 255

LUT3 : 54

LUT4 : 902

MUXCY : 154

MUXF5 : 19

VCC : 1

XORCY : 176

IO Buffers : 176

IBUF : 168

OBUF : 8

Selected Device: 6vlx75tlff484-1l

 Number of Slices: 680 out of 2448 27%

 Number of 4 input LUTs: 1211 out of 4896 24%

 Number of IOs: 200

 Number of bonded IOBs: 176 out of 158 111% (*)

Total memory usage is 254268 kilobytes

 Total 31.968ns (22.115ns logic, 9.853ns

route (69.2% logic, 30.8% route)

Figure 10 Timing/memory Analysis of polynomial based

mastrovito GF Multiplier on FFT

Figure 11 Simulation Results of polynomial based

mastrovito on GF Multiplier on FFT.

From the above outcome it suggests the polynomial based

mastrovito on GF (2m) extra effective when evaluate to

different approaches. It's observed that about 38% field for

the certain FPGA is included for the implementation of this

procedure. The CLB’s are related in cascade manner to

receive the functionality for the designed process. As the

insurance plan field of the CBs reduces minimize route

channel width. The cut down extend comes from that the

number of system defects is smaller when the elevate

propagates quicker via the logic. The reminiscence usage of

the proposed system is decreased up to 3.3% than the

traditional approach.

IJDACR

 ISSN: 2319-4863

International Journal of Digital Application & Contemporary Research

Website: www.ijdacr.com (Volume 4, Issue 1, August 2015)

Nonetheless, in this work the fundamental target is using

the GF algorithm at the side of mastrovito in conjunction

with combinational good judgment that outcome in much

less subject, reminiscence and prolong. (As shown in the

Figure 1 -11).

 Table II Comparison between Multipliers

Methods BELS(Basic

logic elements)

Memory

usage

Slices

XOR-SHIFTING 2883 273216 1700

XOR-SHIFTING

on Booth

2520 271488 1320

Polynomial

multiplier on

mastrovito on

GF(2m)

1653 254268 680

VII. CONCLUSION

In this paper, the Sir Bernard Law modular multiplication

algorithm is studied and also implemented in the FPGA for

obtaining a realistic assessment point of view.CSE based

Montgomery multiplication algorithm is an awfully

effective method of modular multiplication. The algorithm

operates in binary extension fields. It includes a pre

computation block, hence reducing the longest route

prolong enormously. The study of the pre computation

block in terms of silicon discipline concludes that the total

influence is insignificant for speedy Fourier become

purposes. The operand length is carried out from eight bits

to 1024 bits. It can be mentioned that the based on

Montgomery multiplier operates at about 1.2- 2.5 V for

Spartan sequence FPGAs.

The pace and power characteristics can also be

investigated and its performance in phrases of routing

architecture. The outcome show that the Polynomial

multiplier centered on mastrovito doubles the algorithm is

four times rapid in GF (2M) mode, when compared to

normal multiplication algorithms.

Conclusions of this study show that the multiplier

can be increased to approach more multiplier bits in every

clock cycle. The seam up power consumption of multipliers

is much elegant on their switch recreation. The switch

endeavor may also be diminished with the aid of graph

established algorithm nevertheless it must no longer limit

the velocity of the multiplier.

REFERENCES

[1] Renteria-Mejia, C.P. Lopez-Parrado, A.Velasco-Medina,

J."Hardware design of FFT polynomial multipliers Circuits” and
Systems (LASCAS), 2014 IEEE 5th Latin American Symposium

on Year: 2014,Pages: 1 - 4,

[2] Chen, D.D. Mentens, N.Vercauteren, F.Roy, S.S.Cheung,
R.C.C.Pao, D.Verbauwhede, I.“High

speed Polynomial Multiplication Architecture for Ring-LWE and

SHE Cryptosystems”Circuits and Systems I: Regular Papers, IEEE
Transactions on Year:2015, Volume: Issue: 1,Pages: 157 – 166.

[3] “Fast Fourier Transform applications of brahmaqupta-bhaskara

equation,” (2006) IEEE Circuits Syst. I, Reg. Papers, vol. 53, no.
7, pp. 1565–1571

[4] H.Wu, (2008) “Bit-parallel polynomial basis multiplier for new

classes of finitefields,”ieeetrans.Comput.,vol.57,no.8,pp.1023–
1031

[5] P. K. Meher, (2009) “On efficient implementation of accumulation

in finite fieldover and its applications,”ieeetrans.verylargescale
Integr. (VLSI) Syst., vol. 17, no. 4, pp. 541–550

[6] Digital Signature Standard (DSS), FIPS 186–2, (2000) National

Institute of Standards and Technology
[7] T. Zhang and K. K. Parhi, (2001) “Systematic design of original

and modified mastrovito multipliers for general irreducible

polynomials,” IEEE Trans. Comput., vol. 50, no. 7, pp. 734–749
[8] C.-Y. Lee, J.-S. Horng, I.-C. Jou, and E.-H. Lu, (2005) “Low-

complexity bit-parallel systolic montgomery multipliers for special

classes of GF (2M),” IEEE Trans. Comput., vol. 54, no. 9, pp.
1061–1070

[9] P.K.Meher, (2009) “Systolic and non-systolic scalable modular

designs of finitefield multipliers for reed-
solomoncodec,”ieeetrans.verylarge Scale Integr. (VLSI) Syst., vol.

17, no. 6, pp. 747–757

[10] P.Montgomery, (1985) “Modular multiplication without trial
division,” Math, Computation, vol. 44, no. 170, pp. 519–521

[11] P. Montgomery, (2009) “Bit-serial and bit-parallel CSE based
Montgomery multiplication and squaring over,” IEEE Trans.

Comput., vol. 58, no. 10, pp. 1332–1345

[12] K.K. Parhi, (1999) VLSI Digital Signal Processing Systems:

Design and Implementation. New York: Wiley

[13] C. W. Chiou, C.-Y. Lee, A.-W. Deng and J.-M. Lin, (2006)

“Concurrent error detection in CSE based Montgomery
multiplication over,” IEICE Trans. Fundam. Electron, Commun.

Comput. Sci., vol. E89-A, no. 2, pp. 566–574

[14] S. K. Jain, L. Song, and K. K. Parhi, (1998) “Efficient semisystolic
architectures for finite field arithmetic,” IEEE Trans. Very Large

Scale Integr. (VLSI) Syst., vol. 6, no. 1, pp. 734–749

[15] S. B.Sarmadi and M. A. Hasan, (2000) “Concurrent error detection
in finite field arithmetic operations using pipelined and systolic

architectures,” IEEE Trans. Comput., vol. 58, no. 11, pp. 1553–

1567.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Renteria-Mejia%2C%20C.P..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Lopez-Parrado%2C%20A..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Lopez-Parrado%2C%20A..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Velasco-Medina%2C%20J..QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6820315&newsearch=true&queryText=polynomial%20multiplier%20for%20FFT
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6815880
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6815880
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6815880
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Chen%2C%20D.D..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Mentens%2C%20N..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Mentens%2C%20N..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Roy%2C%20S.S..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Roy%2C%20S.S..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Cheung%2C%20R.C.C..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Cheung%2C%20R.C.C..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Verbauwhede%2C%20I..QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6918547&newsearch=true&queryText=polynomial%20multiplier%20for%20FFT
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6918547&newsearch=true&queryText=polynomial%20multiplier%20for%20FFT
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6918547&newsearch=true&queryText=polynomial%20multiplier%20for%20FFT
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=8919
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=8919
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=7001724

