
IJDACR

 ISSN: 2319-4863

International Journal of Digital Application & Contemporary Research

Website: www.ijdacr.com (Volume 4, Issue 2, September 2015)

Design & Implementation of AHB Interface for SOC

Application

Sangeeta Mangal

M. Tech. Scholar

Department of Electronics &

Communication

Pacific University, Udaipur

(India)

enggsangeetajain@gmail.com

Nakul Mangal

Asst. Professor

Department of Electronics &

Communication, USB Group of

Colleges of Engineering and

Technology, Abu- Road,

Rajasthan (India)

nakulmangal@yahoo.com

Govind Singh

M. Tech. Scholar

Geetanjali institute of technical

studies Udaipur R.T.U. Kota

ec.govindsingh@gmail.com

Abstract— In The AMBA™ on-chip interconnect system is an

established open specification that details a strategy on the

interconnection and management of functional blocks that

makes up a System-on-Chip (SoC).

In this work, the design and implementation of an

AMBA based AHB Master and AHB Slave with Memory

controller interface is proposed. It is majorly categorized in two

dedicated feature i.e. decision (AHB MASTER) and response

(AHB SLAVE).

Moreover AHB master enables transfer types i.e.

burst mode and AHB Master-to-AHB slave supports

incrementing and wrapping addressing modes and completes

data transfer which the data width of read and write is different

by asymmetric asynchronous FIFO .A bridge between AHB

Master and AHB slave with application of memory controller

will been shown and there digital efficiency in terms of area and

speed will be discussed. Control structure will be designed with

finite state machine. The IP of AHB Master and AHB Slave will

been implemented in Xilinx Spartan-3 3s50pq208-5.

Keywords — AMBA, AHB Master, AHB Slave, SOC.

I. INTRODUCTION

Motivation

Systems-on-Chip (SoC) and in particular embedded real-

time systems typically consist of several computational

elements. These elements full-fill different tasks for

processing an overall solution. Let’s take a set-top box for

TV sets as an example. A set-topmost generate a TV-signal

for a particular TV channel from a digital satellite signal.

This process takes different tasks. One task is to split the

incoming digital signal into data streams, such as video and

audio. Another task is to convert the video stream into an

actual TV-signal. One more conversion has to be made to

turn the audio stream into an audio signal for the TV set.

Meanwhile, another task handles the user input such as

changing the channel when the remote control is pressed. All

these tasks have to be done in parallel and are bound by real-

time deadlines. The cost of missing these deadlines is visible

as black boxes on the screen or audible as noise. This is

unacceptable and therefore it is necessary to always deliver

this data within hard real-time deadlines. These

computational elements are either general-purpose

processors or digital signal processors. Nowadays, multiple

of them are integrated into a System-on-Chip solution. A

processor needs to interact with other processors, memories

or I/O devices to complete a task. Currently busses are used

to interconnect these IP blocks. The current research in the

field suggests using Networks-on-Chip (NoC) to

interconnect IP blocks, because NoCs allow more flexibility

than busses. However, to get NoCs accepted as

communication paradigm in SoCs there are still left open

research questions according to. An example is how to deal

with voluminous storage. High volume storage is usually put

off-chip as dynamic memory. The separation is necessary

because the manufacturing process is a different one for

memories to that for standard logic. Dynamic memories

provide high data rates and high storage capabilities.

Nevertheless, dynamic memories lack flexibility in

accessing random memory locations efficiently and require

refresh cycles to keep the content. Allowing efficient

communication between IP blocks and a shared memory

requires a memory controller. IP blocks, which

communicate with the memory, are named hereinafter

requestors. The memory controller arbitrates between the

requestors and manages the memory accesses. The goal of

this paper is to design a memory controller to provide hard

real-time guarantees, and provides an efficient

communication between IP blocks and the memory. The

mailto:enggsangeetajain@gmail.com
mailto:nakulmangal@yahoo.com
mailto:ec.govindsingh@gmail.com

IJDACR

 ISSN: 2319-4863

International Journal of Digital Application & Contemporary Research

Website: www.ijdacr.com (Volume 4, Issue 2, September 2015)

memory controller should also be easily/efficiently

combined with the interconnection.

Problem Definition

In SOC biggest challenges are Integrity, Microprocessor

performance has improved rapidly these years. In contrast,

memory latencies and bandwidths have improved little. The

result is that the memory access time has been a bottleneck

which limits the system performance. Memory controller

(MC) is designed.

Even master operates on different protocol and it is

interaction with memory then it will send or receives its data

with helps of its slave Interface.

Objective

As increasing numbers of companies adopting the AMBA

system, it has rapidly emerged as the de-facto standard for

SoC interconnection and IP library development. AMBA

enhances a reusable design methodology by defining a

common backbone for SoC modules.

In this work, the design and implementation of an AMBA

based Memory controller is proposed .The AMBA based

Memory controller gives an ease of integration for sub-

frame extraction of various data structures in SOC.AMBA

based interaction deals with role specific operation. It is

majorly categorized in two dedicated feature i.e. decision

(AHB MASTER) and response (AHB SLAVE).

Moreover AHB master enables transfer types i.e.

burst mode and AHB Master-to-AHB Slave supports

incrementing and wrapping addressing modes and

completes data transfer which the data width of read and

write is different by asymmetric asynchronous FIFO.

A bridge between AHB with application of

memory controller will be shown and there digital efficiency

in terms of area and speed will be discussed. Control

structure will be designed with finite state machine. The IP

of AHB Master and AHB Slave will been implemented and

its interface with memory controller will be designed and

tested.

II. OUR DESIGN

Figure 1: Top architecture of AHB memory controller

The above figure shows the top level implementation of

AHB compliant Memory controller. Data is initiated by

master and communicated through slave to memory

controller. Initially master generates the data and control

signals and further those controls cannot directly

communicate with any given generic memory, hence data

processed through slave .further data passes through slave

interface .we have used FIFO for data and control buffering

so that even slave and memory are in different CLK then also

our communication is full proof. It reduces the complexity.

Further data is communicated through ram or rom depends

upon the read and write communication.

AHB Bus Master

The AHB Master is an interface unit which allows the

processor to initiate data transfer to the AHB slave. The

master takes care of address and data transfer between

processor and memory. It generates the corresponding

control signal as it is triggered by an arbitration unit as an

HGRANTx signal. It supports burst mode operation and

generates the sequence of operations according to all

handshaking signals.

The bus master handles all four types of slave response and

its wait state, i.e. HREADY. It generates four transfer types

of HTRANS to complete the handshaking with the other

interfaces of the slave. Figure 2 shows the pin diagram of the

AHB Master Interface, which is necessary for establishing

AHB

Master

AHB

Slave

AHB

Slave

Interface

Memory

Controller

Interface

RAM

ROM

FIFO

IJDACR

 ISSN: 2319-4863

International Journal of Digital Application & Contemporary Research

Website: www.ijdacr.com (Volume 4, Issue 2, September 2015)

the interface between the AHB Master and the AHB Slave

with arbitration unit.

Figure 2: AHB Bus Master Interface

Figure 3: AHB Master

AHB Bus Slave
An AHB bus slave responds to transfers initiated by bus-

masters within the system. The slave uses a HSELx select

signal from the decoder to determine when it should respond

to a bus transfer. All other signals required for the transfer,

such as the address and control information, will be

generated by the bus master.

The fig 4 shows the state diagram of memory controller .It

is a finite state machine implementation initial condition is

reset state which is an idle state when no operation is there.

When start signals arrived then this FSM triggers, depends

upon the instruction its operation is decided by CMD state.

According to instruction it moves to ram read, ram write and

rom read operation.

Address

Generator

2:1

Mux

Counter

Controller

Interface

Sel

CPU add

Hsize

HTrans

HAdder

Generated

Address

IJDACR

 ISSN: 2319-4863

International Journal of Digital Application & Contemporary Research

Website: www.ijdacr.com (Volume 4, Issue 2, September 2015)

Figure 4: Memory controller

Memory Controller

The two main tasks for the core memory controller are to

handle all the timings between different commands and to

keep track of which rows that are currently activated. The

activation of rows are time consuming and therefore the core

memory controller has a look ahead functionality where the

arbitrator can notify which command that is in turn to be

executed after the current one has finished. This makes it

possible to activate the row in advance if the next command

is not accessing the same bank or chip as the current

command.

FIFO

FIFO is a method of processing and retrieving data. In a

FIFO system, the first items entered are the first ones to be

removed. In other words, the items are removed in the same

order they are entered.

CMD

RESET

ROM

Read

RAM

Read

RAM

Write

IJDACR

 ISSN: 2319-4863

International Journal of Digital Application & Contemporary Research

Website: www.ijdacr.com (Volume 4, Issue 2, September 2015)

Figure 5 FIFO

In Figure 5, two modules (called the source and the sink) are

connected to one another. When data is being passed from

module to module, the source is the module that is outputting

data. The sink is the module that is receiving that data.

Figure 5 also shows three signals between the two:

Data, FIFO Full, and FIFO Empty. Data is the wire

that actually passes data from the source to the sink. FIFO

Full and FIFO Empty are known as handshaking signals

which allow the source and the sink to communicate with

regards to when it is time to pass the data.

The FIFO Full signal indicates that the FIFO is full,

put valid data on the Data line. FIFO Full is what is called a

state signal: it is high only when data is valid. If data is not

valid on the Data line during a particular cycle, Valid should

be low during that cycle.

III. SIMULATION RESULTS

The figure given below shows the simulation results of

master. CPU initiates the first address and rest of address is

generated by master according to HBURST and HSIZE.

Master will generate HTRANS signal as a response. When

hready is low then master will not generate it next address.

Once hready is high then master starts is next address

generation.

In figure given below result shows the handshaking between

slave and slave interface where slave is directly interacting

with master and its response is given by slave, Further the

read write operation is forwarded to memory controller by

slave interface.

Figure 6: Top architecture of AHB master slave memory controller

Final Results

Device Utilization Summary:

Selected Device: 3s50pq208-5

Number of Slices: 160 out of 768 20%

Number of Slice Flip Flops: 111 out of 1536 7%

Number of 4 input LUTs: 273 out of 1536 17%

Number used as logic: 177

Number used as RAMs: 96

Number of IOs: 108

Number of bonded IOBs: 79 out of 124 63%

IOB Flip Flops: 32

Number of GCLKs: 3 out of 8 37%

Timing Summary

Speed Grade: -5

Module A

(Source)

Module B

(Sink)

FIFO Full

DATA

FIFO Empty

IJDACR

 ISSN: 2319-4863

International Journal of Digital Application & Contemporary Research

Website: www.ijdacr.com (Volume 4, Issue 2, September 2015)

Minimum period: 6.425ns (Maximum Frequency:

155.647MHz)

Minimum input arrival time before clock: 7.269ns

Maximum output required time after clock: 6.141ns

Table 1: Power Supply Summary

 Total Dynamic Quiescent

Supply Power (mW) 27.34 0.00 27.34

Table 2: Power Supply Currents

Supply

Source

Supply

Voltage

Total

Current

(mA)

Dynamic

Current

(mA)

Quiescent

Current

(mA)

Vccint 1.200 5.08 0.00 5.08

Vccaux 2.500 7.00 0.00 7.00

Vcco25 2.500 1.50 0.00 1.50

IV. CONCLUSION

In this paper AHB based Memory Controller is designed.

The design has been implemented using VHD for SOC

solution. The design has taken care of balance between area

and speed. Master IP has been implanted and its address

generator block is implemented with Single adder instead of

64 typical adder hence we have manage to reduce the area

with help of proper design .Every implementation is in

structural approach hence it’s become a well-documented

frame. There is separate implementation of slave and slave

interface with inter faces the memory controller further. To

avoid the handshaking complexity we have used FIFO for

memory controller interface and slave interface. Even it

increases the latency but at the same time it makes design

simple and bottleneck problem free. The design has been

synthesized on XILINX 13.1 Spartan 3, and simulated in

MODELSIM.

