

International Journal of Digital Application & Contemporary research
 Website: www.ijdacr.com (Volume 4, Issue 04, November 2015)

1

IJDACR ISSN: 2319-4863

Efficient BIST architecture for combinational and

sequential faulty circuits

 Ankita Tripathi A.P RAO, (Reader) (Et &T dept.),

ankita9tripathi@gmail.com prabhakar.amarana@gmail.com

Abstract— Very Large Scale Integration (VLSI) has made an

extraordinary effect on the development of integrated circuit

technology. It has not only decreased the dimension and the

price but also improved the complexness of the circuits. There

are, however, prospective issues which may slow down the

efficient use and development of upcoming VLSI technology.

Among these is the issue of circuit testing, which becomes

progressively challenging as the range of integration grows.

Because of the high device counts and restricted input/output

accessibility that define VLSI circuit, conventional testing

techniques are often worthless and inadequate for VLSI

circuit. Built-in self-test (BIST) is a commonly used design

technique that allows a circuit to test itself. In this paper BIST

architecture is implemented for testing of various faulty

circuits. Also testing for embedded memory, MARCH-Y

algorithm is used for coupling fault, stuck at on fault, stuck at

zero faults.

Keywords— VLSI, BIST, Faulty Circuits, MARCH-Y

I. INTRODUCTION

 BIST (Built-In Self-Test) for random logic is becoming an eye-

catching substitute in IC testing, although logic BIST is a recent

subject which is under research over more than 3 decades. This

paper provides the use of a deterministic logic BIST structure

upon state-of-the-art industrial circuits. Nevertheless, new

innovations throughout deep-submicron IC process

engineering as well as core-based IC design and design

engineering will surely lead to more popular using logical BIST

due to the fact outer assessment is actually becoming a lot more

difficult as well as high-priced. Logic built-in self-test (BIST)

depend on the fundamental design for test methodology. For

any testing methodology, the following factors should be

considered- high and easily verifiable fault coverage, minimum

test pattern generation, minimum performance degradation, at-

speed testing, short testing time, and reasonable hardware

overhead [1]. Logic Built-In Self-Test (BIST) provides a

feasible solution to the above demands. First, BIST

significantly reduces off-chip communication to overcome the

bottleneck caused by the limited input/output access. Further, it

eliminates much of the test pattern generation and simulation

process [1]. Testing time can be shortened by testing multiple

units simultaneously through test scheduling. Hardware

overhead can be minimized by careful design and through the

sharing of test hardware. In the modern System-on-aChip

(SoC) design, many cores are integrated into a single chip.

Some of them are embedded, and cannot be accessed directly

from the outside of the chip. Such SoC designs make the test of

these embedded cores a great challenge [2]. BIST is one of the

most popular test solutions to test the embedded cores. Since

more and more transistors are integrated on a single IC, the

amount of test vectors to test such large ICs is increasing. This

requires large memories in external test equipment. In addition,

a significant increase is predicted.

 Originally, the predominant compelling purpose for the

adopting of BIST was the need to execute in-field examining.

Just lately, there have been developing desires for BIST as it

may lower the price of manufacturing test together with

strengthen the standard of the particular test by providing at-

speed testing ability. In BIST, pseudorandom styles tend to

be generated on chip; the actual replies tend to be compacted

about chip, as well as the handle impulses tend to be pushed

simply by an on-chip controller. The amount of examination

files exchanged with the tester is consequently considerably

lowered. In addition, the scan cells are configured into a large

number of relatively short scan chains, thus reducing the time

required to apply a single test pattern. The low memory and

performance requirements on the tester allow the usage of

very low cost testers for manufacturing test of designs with

logic BIST.

II. METHODOLOGY

Linear Feedback Shift Register

 LFSR is an n-bit shift register which pseudorandomly scrolls

between 2n-1 values, but does it very quickly because there is

IJDACR
 ISSN: 2319-4863

International Journal of

Digital Application

&

Contemporary research
Website: www.ijdacr.com (Volume 1, Issue 1, August 2012)

2

minimal combinational logic involve [1]. The all zeros case is

not possible in this type of LFSR, but the probability of any bit

being "1" or "0" is 50% except for that. Therefore, the sequence

is pseudorandom in the sense that the probability of a "1" or "0"

is approximately 50%, but the sequence is repeatable. Like a

binary counter, all 2n - 1 states are generated, but in a “random”

order that is repeatable. The exclusive-OR gates and shift

register act to produce a pseudorandom binary sequence

(PRBS) at each of the flip-flop outputs. By correctly choosing

the points at which we take the feedback from an n -bit shift

register we can produce a PRBS of length 2n – 1, a maximal-

length sequence that includes all possible patterns (or vectors)

of n bits, excluding the allzeros pattern. In an LFSR, the bits

contained in selected positions in the shift register are

combined in some sort of function and the result is fed back

into the register's input bit. Fig.1 shows a 3bit LFSR.

Figure1: 3 bit maximal-length LFSR

The feedback is done so as to make the system more stable

and free from errors. Specific taps are taken from the tapping

points and then by using the XOR operation on them they are

feedback into the registers.

Signature Analysis

 Signature Analysis is a compression technique based on the

concept of cyclic redundancy checking [2]. The good and

faulty circuits produce different signatures. Test Patterns for

BIST can be generated at-speed by an LFSR with only a

clock input. The outputs of the circuitunder-test must be

compared to the known good response. In general, collecting

each output response and off-loading it from the circuit under

test for comparison is too inefficient to be practical. The

general solution is to compress the entire output stream into

a single signature value.

SISR - Single-Input Signature Register

 A serial-input signature register can only be used to test logic

with a single output. There are several ways to connect the

inputs of LFSRs to form an SISR. Since the XOR operation

is linear and associative, (A⊕ B) ⊕ C = A ⊕ (B ⊕ C), as

long as the result of the additions are the same then the

different representations are equivalent. If we have an n -bit

long SISR we can accommodate up to n inputs to form the

signature. If we use m < n inputs we do not need the extra

XOR gates in the last n – m positions of the SISR. SISR

reduce the amount of hardware required to compress a

multiple bit stream. LFSR and/or SISR circuit is

implemented using a memory already existing in a circuit to

be tested. If we apply a binary input sequence to LFSR, the

shift register will perform data compaction (or compression)

on the input sequence. At the end of the input sequence the

shift-register contents, Q0, Q1, and Q2, will form a pattern that

we call a signature. If the input sequence and the serial-input

signature register (SISR) are long enough, it is unlikely

(though possible) that two different input sequences will

produce the same signature. If the input sequence comes

from logic that we wish to test, a fault in the logic will cause

the input sequence to change. This causes the signature to

change from a known good value and we shall then know

that the circuit under test is bad. This technique, called

signature analysis, was developed by Hewlett-Packard to test

equipment in the field in the late 1970s. The simplest form

of this technique is based on a single input LFSR.

Figure2: 3 bit Single-input signature register (SISR)

Every LFSR has a characteristic polynomial that describes

its behavior. Degree of polynomial is given by the number of

shift registers.

Description of MARCH Y algorithm

March Y algorithm: ↕ (W0); ↑ (R0, W1, R1); ↓ (R1, W0,

R0); ↕ (R0)

The basic notations used in algorithm are as follows:

• ↑: address 0 to n-1

• ↓: address n-1 to 0

IJDACR
 ISSN: 2319-4863

International Journal of

Digital Application

&

Contemporary research
Website: www.ijdacr.com (Volume 1, Issue 1, August 2012)

3

• ↕: either way

• W0: Write 0 to the word

• W1: Write 1 to the word

• R0: Read a cell whose value should be 0

• R1: Read a cell whose value should be 1

• The FSM should have a START state and be

activated by an external signal RUN_BIST.

• The design should have an input signal

BIST_COMP feedback from the SRAM such

that when BIST_COMP=1 means there is a fault,

0 no fault. If BIST-COMP=1, the simulation

should be terminated and the FSM goes to END

state. The address lines should read the failing

address.

• Output pins Read_En to be activated during the

Read operation, and Write_En to be activated

during the write operation.

• A Compare state follows each Read operation,

during which NO Read or Write operations are

activated

• An output signal called Error is activated when

the FSM goes to END state corresponding to

failure.

• The machine should produce the address and data

output signals to feed the array.

• You should provide a test fixture file to run the

machine.

• Use 500MHZ clock.

Design Methodology

Figure3: BIST machine Specifications

The BIST March Y algorithm is implemented using a Finite

State Machine. The state diagram used to design the BIST is

shown below:

Figure4: FSM based implementation of the MARCH Y BIST

algorithm

The finite state machine of the BIST March Y algorithm has

16 states, hence the state are represented using 4 bits. The

controller starts the BIST algorithm if the RUN_BIST signal

is asserted, and otherwise it stays in the idle state. If the

RUN_BIST=1, then initially write-0 operation is performed

on all the words sequentially and then a read-0 is performed

and compared with 0. If the result is correct then we write-1

on the same cell. If the comparison is incorrect then the

machine goes to STOP state. Again, a read-1 operation is

performed on the same cell and compared with-1. If the

comparison result is correct, it increases the address and if

the comparison is incorrect, the machine goes to STOP state.

 Similar to the above process, initially read operation takes

place; this read is followed by a comparison operation. And

then write-0 is performed and again read and comparing with 0

takes place.

 In the end, read 0 operation is performed and compared with

0. In all the above comparisons, if the result s incorrect then the

machine goes to idle state otherwise the machine goes to the

corresponding state.

 The state transitions are shown in the above figure. After each

comparison the machine goes to either write state or to the

STOP state if the FSM generates an error. The FSM is easily

designed using case and if statements in the VHDL. In each

state the corresponding Read enable (RE) and Write enable

(WE) signals are asserted.

IJDACR
 ISSN: 2319-4863

International Journal of

Digital Application

&

Contemporary research
Website: www.ijdacr.com (Volume 1, Issue 1, August 2012)

4

 If the machine is in STOP state the Finish is always asserted

and if the error is found, the Error signal is also asserted.

The VHDL Implementation of BIST March Y Algorithm

 The BIST is hierarchically implemented in VHDL, with the

top module as BIST and then BIST controller and SRAM

modules are the sub modules in the top BIST module.

Figure5: Module hierarchy in the VHDL implementation of BIST March
Y algorithm

Since this is simulation, error in SRAM will not appear as

unless intentionally introduced, we will have one SRAM

module which has random bit sequences at some registers

which will work as an error in SRAM. Since in the simulation

using Modelsim, the error cannot be introduced during

simulation hence a separate SRAM module is designed which

has an error. According to this the top module is modified to

invoke the SRAM file with error and without error. Faulty

Circuits

Figure6: Full Adder

Figure7: D Flip-Flop

Figure8: Counter

Figure9: RAM

III. SIMULATION RESULTS

Following figures shows the synthesis result:

IJDACR
 ISSN: 2319-4863

International Journal of

Digital Application

&

Contemporary research
Website: www.ijdacr.com (Volume 1, Issue 1, August 2012)

5

IV. CONCLUSION

The BIST architecture proposed is implemented using

VHDL language and tested on various faulty circuits. Then

design has been synthesised on Xilinx and fault has been

created and simulated on Modelsim. Special testing for

embedded memory MARCH-Y algorithm has been tested for

coupling fault, stuck at on fault, stuck at zero faults.

REFERENCES

[1] Digital system testing & testability. Abromovici.

[2] L.T. Wang, Cheng- Wen Wu and Xiaoqing Wen, “VLSI Test
Principles & Architectures Design for testability”.

[3] Wu- Tung Cheng, Manish Sharma, Thomas Rinderknecht, Liyang

Lai and Chrisshill, “Signature based diagnosis for logic BIST”,

ITC, 2006.

[4] N. Tamarapalli and J. Rajski, “Constructive Multi- Phase Test

Point Insertion for Scan-Based BIST”, Proc. of International Test

Conference, pp. 649-658, 1996.

[5] A. Hassan, J. Rajski, R. Thompson and N. Tamarapalli, “Method

and Apparatus for At-Speed Testing of Digital Circuits”, US patent

pending.

[6] B. Nadeau-Dostie, D. Burek and A. Hassan, “Scan-BIST: A

Multifrequency Scan-Based BIST Method”, IEEE Design &Test

of Computers, pp. 7-17, Vol. 11, No. 1, Spring 1994.

