
IJDACR

 ISSN: 2319-4863

International Journal of Digital Application & Contemporary research

Website: www.ijdacr.com (Volume 2, Issue 1, August 2013)

Implementation of Radix-2 Montgomery Multiplier in

VHDL

Jaya Bansal Jagdish Nagar
jayabansal3@gmail.com jagdishnagar1@gmail.com

Abstract –Low power consumption and smaller area

requirement are prime concern in fabrication of DSP

system on FPGA. Modular arithmetic is core

operation in cryptosystems since they are efficient

when data size is large (1024 bits or greater). In this

paper a novel architecture of radix-2 Montgomery

multiplier is presented and implemented on Vertex-iv

FPGA device. Simulation shows that our design

performs faster in terms of clock frequency while it

requires lower area.

Keywords– Radix-2 Montgomery multiplier, VHDL,

FPGA.

I. INTRODUCTION

With the advancement in communication systems,

security is a prime concern which is offered by

public key cryptosystems. These systems offer

authentication, confidentiality and privacy. Many

cryptosystems including RSA, DSA and ECC

systems requires modular multiplication for private

key generation. [1] P. Montgomery developed an

efficient algorithm for the calculation of (A X B)

mod M called Montgomery Multiplication

algorithm.

Montgomery multiplication has been used as a

fundamental operation of arithmetic operations in

RSAalgorithm.

This paper presents FPGA implementation of

scalable architecture for radix-2 Montgomery

multiplication algorithm for 1024 bit operand.

II. MONTGOMERY MULTIPLICATION

In 1985 a method for modular multiplication using

Residue Number System (RNS) representation of

integers is proposed by Peter L. Montgomery. In

this methodthecostly division operation usually

needed to perform modular reduction is replaced by

simple shiftoperations by transforming the

operands into the RNS domain before theoperation

and re-transforming the result after operation.A

radix R is selected to be two to the power of a

multiple of the word size and greater than the

modulus, i.e. R = 2w> M. For the algorithm to work

R and M need to be relatively prime, i.e. must not

have any common non-trivial divisors. With R a

power of two, this requirement is easily satisfied by

selecting an odd modulus. This also fits in nicely

with the cryptographic algorithms that we are

targeting, where the modulus is either a prime

always odd with the exception of 2or the product of

two primes and therefore odd as well.

RNS representations of integers are called M

residues and are usually denominated as the integer

variable name with a bar above it. An integer a is

transformed into its corresponding M-residue �̅� by

multiplying it by R and reducing modulo M. The

back-transformation is done in an equally straight

forward manner by dividing the residue by R

modulo M. Thus here are the following equations

as transformation rules between the integer and the

RNS domain:

 �̅� = 𝑎𝑅(𝑚𝑜𝑑 𝑀)

𝑎 = �̅�𝑅−1

Montgomery Multiplication can be defined simply

as the product of two M residues divided by the

radix modulo M:

𝑐̅ = �̅��̅�𝑅−1(𝑚𝑜𝑑 𝑀)

Division by the Radix is required to make the result

again an M-residue.

III. RADIX-2 MONTGOMERY MULTIPLICATION

ALGORITHM

 M be any odd integer which is greater than zero

for satisfying radix-2 operation and X, Y are two

operands. Montgomery multiplication involves first

transformation of operands into Montgomery

domain and then after result is re-transformed into

Montgomery domain. This conversion process

replaces division by several shift operations.

Let X and Y be two n-bit operands then

Montgomery multiplication process is described as

follows:

(X,Y) mod M=X’.Y’.2-n.

Where X’=X.2n.

 Y’=Y.2n.

Hence (X,Y) mod M=(X.2n).(Y.2n).2-n

IJD
ACR

IJDACR

 ISSN: 2319-4863

International Journal of Digital Application & Contemporary research

Website: www.ijdacr.com (Volume 2, Issue 1, August 2013)

 =X.Y.2n

Algorithm 1. Radix-2 Montgomery Multiplication

IV. MONTGOMERY MULTIPLIER ARCHITECTURE

The interface of Montgomery modular multiplier is

shown in Fig.1. It receives the operands X, Y and M

and it returns

R = (X´Y´2-n) mod M. X and Y are 1024 bits

respectively.

Figure 1:Montgomery Multiplier for 1024 bit data

M

Half-ac

P-minus

P-minus

m as(0)
Ce_p

Ce_p as(0)

Half-as

b

s

b

c

as ac

Z P

PC

PS

Start

1 0

Load

y x

FSM

Counter

MUX

Shift

Register

AND

1st CSA

2nd CSA

MUX 2:1 Register

ADDER

MUX 2:1

Register

MUX 2:1

 Add

er

Figure 2: Architecture for Montgomery Multiplier

M

U

X

M

U

X

Input: odd M, n = [Log2 M] +1,

𝑋 = ∑ 𝑥𝑖2
𝑖

𝑛−1

𝑖−0

, 𝑤𝑖𝑡ℎ 0 ≤ 𝑋, 𝑌 < 𝑀

Output:

 Z=MP(X, Y, M) ≡ X. Y .2-n (mod M),

 With 0≤ 𝑍 < 𝑀.

S [0] =0;

For i=0 to n-1 do

𝑞𝑖 = (𝑥𝑖 . 𝑌0)⨁𝑆[𝑖]0;

S [i+1] =(S[i] +xi. Y +qi. M)/2;

If S[n]>M then

S[n] =S[n]-M;

Return Z=S[n];

IJD
ACR

IJDACR

 ISSN: 2319-4863

International Journal of Digital Application & Contemporary research

Website: www.ijdacr.com (Volume 2, Issue 1, August 2013)

The detailed architecture of radix-2 Montgomery

multiplier is shown in fig.2. It contains two carry

save adders, a shift register, 6-multiplexer, and a

control unit.

The input X is passed through shift register while

input Y is directly applied to first carry save adder

which implementsR+(Xi*Y) and second adder

gives R+M.

The control unit controls the operation of entire

process: Finite State Machine with three states is

used to control multiplication process.

 S0: initialization of the state machine;

Ce_p=0;load=0; Go to S1;

 S1: load multiplicand and modulus

into registers; load multiplicand into

shift register;

Ce_p=0;load=1; done=0;

Go to S2;

 S2: wait for ADDER1;

Wait for ADDER2; Ce_p=1; load=0; done=0;

V. RESULT

Number of Slices:

6536 out of 10240

63%

Number of Slice Flip

Flops:

3224 out of 20480

15%

Number of 4 input

LUTs:

12464 out of 20480

60%

Maximum Frequency: 353.576MHz
Performance of 1024-bitMontgomery Multiplier on Vertex-IV FPGA

 Fig.3. RTL Schematic of Multiplier

Fig.4. Simulation of Montgomery Algorithm

VI. CONCLUSION

In this paper a novel method for implementing

1024-bit Radix-2 Montgomery multiplier on FPGA

is discussed. As clear form the results our design

performs best in terms of clock speed while

maintaining lower area requirement.

REFERENCE
[1] P. Montgomery, “Modular multiplication without

trial division,” Mathematics of Computation,vol. 44,

pp. 519–21, April 1985.

[2] A.F. Tenca and C¸ .K. Koc¸, “A Scalable

Architecture for MontgomeryMultiplication,” Proc.

First Int’l Workshop Cryptographic Hardwareand

Embedded Systems (CHES ’99), pp. 94-108, 1999.

[3] A.F. Tenca and C¸ .K. Koc¸, “A Scalable

Architecture for ModularMultiplication Based on

Montgomery’s Algorithm,” IEEE Trans.Computers,

vol. 52, no. 9, pp. 1215-1221, Sept. 2003.

[4] D. Harris, R. Krishnamurthy, M. Anders, S. Mathew,

and S. Hsu,“An Improved Unified Scalable Radix-2

Montgomery Multiplier,”Proc. 17th IEEE Symp.

Computer Arithmetic (ARITH), pp. 172-178,June

2005.

[5] Klein, M., Rogers G.J., Moorty S., and Kundur, P.,

“Analytical investigation of factors influencing

power system stabilizers performance”, IEEE

Transactions on Energy Conversion, Volume: 7

Issue: 3, Sept. 1992, Page(s): 382 -390.

[6] N. Jiang and D. Harris, “Parallelized Radix-2

Scalable MontgomeryMultiplier,” Proc. IFIP Int’l

Conf. Very Large Scale Integration(VLSI-SoC ’07),

pp. 146-150, Oct. 2007.

[7] D. Amanor, V. Bunimov, C. Paar, J. PelzlandM.

Schimmler, “Efficient HardwareArchitectures for

Modular Multiplication onFPGAs”, International

Conference on FieldProgrammable Logic,

ReconfigurableComputing, and Applications. August

24-28,(2005), Tampere, Finland.

IJD
ACR

