
IJDACR
 ISSN: 2319-4863

International Journal of Digital Application & Cont emporary research

Website: www.ijdacr.com (Volume 1, Issue 1, August 2012)

1

 Ankita Tripathi A.P RAO, (Reader) (Et &T dept.),

ankita9tripathi@gmail.com prabhakar.amarana@gmail.com

RCET, Bhilai

Abstract— Very Large Scale Integration (VLSI) has made an
extraordinary effect on the development of integrated circuit
technology. It has not only decreased the dimension and the
price but also improved the complexness of the circuits. There
are, however, prospective issues which may slow down the
efficient use and development of upcoming VLSI technology.
Among these is the issue of circuit testing, which becomes
progressively challenging as the range of integration grows.
Because of the high device counts and restricted input/output
accessibility that define VLSI circuit, conventional testing
techniques are often worthless and inadequate for VLSI
circuit. Built-in self-test (BIST) is a commonly used design
technique that allows a circuit to test itself. In this paper BIST
architecture is implemented for testing of various faulty
circuits. Also testing for embedded memory, MARCH-Y
algorithm is used for coupling fault, stuck at on fault, stuck at
zero faults.

Keywords— VLSI, BIST, Faulty Circuits, MARCH-Y

I. INTRODUCTION

 BIST (Built-In Self-Test) for random logic is
becoming an eye-catching substitute in IC testing, although
logic BIST is a recent subject which is under research over
more than 3 decades. This paper provides the use of a
deterministic logic BIST structure upon state-of-the-art
industrial circuits. Nevertheless, new innovations
throughout deep-submicron IC process engineering as well
as core-based IC design and design engineering will surely
lead to more popular using logical BIST due to the fact
outer assessment is actually becoming a lot more difficult
as well as high-priced. Logic built-in self-test (BIST)
depend on the fundamental design for test methodology.
 For any testing methodology, the following factors
should be considered- high and easily verifiable fault

coverage, minimum test pattern generation, minimum
performance degradation, at-speed testing, short testing
time, and reasonable hardware overhead [1]. Logic Built-In
Self-Test (BIST) provides a feasible solution to the above
demands. First, BIST significantly reduces off-chip
communication to overcome the bottleneck caused by the
limited input/output access. Further, it eliminates much of
the test pattern generation and simulation process [1].
Testing time can be shortened by testing multiple units
simultaneously through test scheduling. Hardware
overhead can be minimized by careful design and through
the sharing of test hardware. In the modern System-on-a-
Chip (SoC) design, many cores are integrated into a single
chip. Some of them are embedded, and cannot be accessed
directly from the outside of the chip. Such SoC designs
make the test of these embedded cores a great challenge
[2]. BIST is one of the most popular test solutions to test
the embedded cores. Since more and more transistors are
integrated on a single IC, the amount of test vectors to test
such large ICs is increasing. This requires large memories
in external test equipment. In addition, a significant
increase is predicted.
 Originally, the predominant compelling purpose
for the adopting of BIST was the need to execute in-field
examining. Just lately, there have been developing desires
for BIST as it may lower the price of manufacturing test
together with strengthen the standard of the particular test
by providing at-speed testing ability. In BIST,
pseudorandom styles tend to be generated on chip; the
actual replies tend to be compacted about chip, as well as
the handle impulses tend to be pushed simply by an on-chip

Efficient BIST architecture for combinational and
sequential faulty circuits

IJDACR
 ISSN: 2319-4863

International Journal of Digital Application & Cont emporary research

Website: www.ijdacr.com (Volume 1, Issue 1, August 2012)

2

controller. The amount of examination files exchanged
with the tester is consequently considerably lowered. In
addition, the scan cells are configured into a large number
of relatively short scan chains, thus reducing the time
required to apply a single test pattern. The low memory and
performance requirements on the tester allow the usage of
very low cost testers for manufacturing test of designs with
logic BIST.

II. METHODOLOGY

Linear Feedback Shift Register

 LFSR is an n-bit shift register which pseudo-
randomly scrolls between 2n-1 values, but does it very
quickly because there is minimal combinational logic
involve [1]. The all zeros case is not possible in this type of
LFSR, but the probability of any bit being "1" or "0" is
50% except for that. Therefore, the sequence is
pseudorandom in the sense that the probability of a "1" or
"0" is approximately 50%, but the sequence is repeatable.
Like a binary counter, all 2n - 1 states are generated, but in
a “random” order that is repeatable. The exclusive-OR
gates and shift register act to produce a pseudorandom
binary sequence (PRBS) at each of the flip-flop outputs. By
correctly choosing the points at which we take the feedback
from an n -bit shift register we can produce a PRBS of
length 2n – 1, a maximal-length sequence that includes all
possible patterns (or vectors) of n bits, excluding the all-
zeros pattern. In an LFSR, the bits contained in selected
positions in the shift register are combined in some sort of
function and the result is fed back into the register's input
bit. Fig.1 shows a 3bit LFSR.

Figure1: 3 bit maximal-length LFSR

The feedback is done so as to make the system more
stable and free from errors. Specific taps are taken from the

tapping points and then by using the XOR operation on
them they are feedback into the registers.

Signature Analysis

 Signature Analysis is a compression technique
based on the concept of cyclic redundancy checking [2].
The good and faulty circuits produce different signatures.
Test Patterns for BIST can be generated at-speed by an
LFSR with only a clock input. The outputs of the circuit-
under-test must be compared to the known good response.
In general, collecting each output response and off-loading
it from the circuit under test for comparison is too
inefficient to be practical. The general solution is to
compress the entire output stream into a single signature
value.

SISR - Single-Input Signature Register

 A serial-input signature register can only be used
to test logic with a single output. There are several ways to
connect the inputs of LFSRs to form an SISR. Since the
XOR operation is linear and associative, (A⊕ B) ⊕ C = A
⊕ (B ⊕ C), as long as the result of the additions are the
same then the different representations are equivalent. If we
have an n -bit long SISR we can accommodate up to n
inputs to form the signature. If we use m < n inputs we do
not need the extra XOR gates in the last n – m positions of
the SISR. SISR reduce the amount of hardware required to
compress a multiple bit stream. LFSR and/or SISR circuit
is implemented using a memory already existing in a circuit
to be tested. If we apply a binary input sequence to LFSR,
the shift register will perform data compaction (or
compression) on the input sequence. At the end of the input
sequence the shift-register contents, Q0, Q1, and Q2, will
form a pattern that we call a signature. If the input
sequence and the serial-input signature register (SISR) are
long enough, it is unlikely (though possible) that two
different input sequences will produce the same signature.
If the input sequence comes from logic that we wish to test,
a fault in the logic will cause the input sequence to change.
This causes the signature to change from a known good
value and we shall then know that the circuit under test is
bad. This technique, called signature analysis, was
developed by Hewlett-Packard to test equipment in the
field in the late 1970s. The simplest form of this technique
is based on a single input LFSR.

IJDACR
 ISSN: 2319-4863

International Journal of Digital Application & Cont emporary research

Website: www.ijdacr.com (Volume 1, Issue 1, August 2012)

3

Figure2: 3 bit Single-input signature register (SISR)

Every LFSR has a characteristic polynomial that

describes its behavior. Degree of polynomial is given by
the number of shift registers.

Description of MARCH Y algorithm

March Y algorithm: ↕ (W0); ↑ (R0, W1, R1); ↓ (R1, W0,
R0); ↕ (R0)

The basic notations used in algorithm are as follows:

• ↑: address 0 to n-1
• ↓: address n-1 to 0
• ↕: either way
• W0: Write 0 to the word
• W1: Write 1 to the word
• R0: Read a cell whose value should be 0
• R1: Read a cell whose value should be 1
• The FSM should have a START state and be

activated by an external signal RUN_BIST.
• The design should have an input signal

BIST_COMP feedback from the SRAM such
that when BIST_COMP=1 means there is a
fault, 0 no fault. If BIST-COMP=1, the
simulation should be terminated and the FSM
goes to END state. The address lines should
read the failing address.

• Output pins Read_En to be activated during
the Read operation, and Write_En to be
activated during the write operation.

• A Compare state follows each Read
operation, during which NO Read or Write
operations are activated

• An output signal called Error is activated
when the FSM goes to END state
corresponding to failure.

• The machine should produce the address and
data output signals to feed the array.

• You should provide a test fixture file to run
the machine.

• Use 500MHZ clock.

Design Methodology

Figure3: BIST machine Specifications

The BIST March Y algorithm is implemented using a
Finite State Machine. The state diagram used to design the
BIST is shown below:

Figure4: FSM based implementation of the MARCH Y BIST algorithm

The finite state machine of the BIST March Y algorithm
has 16 states, hence the state are represented using 4 bits.
 The controller starts the BIST algorithm if the
RUN_BIST signal is asserted, and otherwise it stays in the
idle state. If the RUN_BIST=1, then initially write-0
operation is performed on all the words sequentially and
then a read-0 is performed and compared with 0. If the

IJDACR
 ISSN: 2319-4863

International Journal of Digital Application & Cont emporary research

Website: www.ijdacr.com (Volume 1, Issue 1, August 2012)

4

result is correct then we write-1 on the same cell. If the
comparison is incorrect then the machine goes to STOP
state. Again, a read-1 operation is performed on the same
cell and compared with-1. If the comparison result is
correct, it increases the address and if the comparison is
incorrect, the machine goes to STOP state.
 Similar to the above process, initially read
operation takes place; this read is followed by a comparison
operation. And then write-0 is performed and again read
and comparing with 0 takes place.
 In the end, read 0 operation is performed and
compared with 0. In all the above comparisons, if the result
s incorrect then the machine goes to idle state otherwise the
machine goes to the corresponding state.
 The state transitions are shown in the above
figure. After each comparison the machine goes to either
write state or to the STOP state if the FSM generates an
error. The FSM is easily designed using case and if
statements in the VHDL. In each state the corresponding
Read enable (RE) and Write enable (WE) signals are
asserted.
 If the machine is in STOP state the Finish is
always asserted and if the error is found, the Error signal is
also asserted.

The VHDL Implementation of BIST March Y Algorithm

 The BIST is hierarchically implemented in
VHDL, with the top module as BIST and then BIST
controller and SRAM modules are the sub modules in the
top BIST module.

Figure5: Module hierarchy in the VHDL implementation of BIST March
Y algorithm

Since this is simulation, error in SRAM will not appear as
unless intentionally introduced, we will have one SRAM
module which has random bit sequences at some registers

which will work as an error in SRAM. Since in the
simulation using Modelsim, the error cannot be introduced
during simulation hence a separate SRAM module is
designed which has an error. According to this the top
module is modified to invoke the SRAM file with error and
without error.
Faulty Circuits

Figure6: Full Adder

Figure7: D Flip-Flop

Figure8: Counter

IJDACR
 ISSN: 2319-4863

International Journal of Digital Application & Cont emporary research

Website: www.ijdacr.com (Volume 1, Issue 1, August 2012)

5

Figure9: RAM

III. SIMULATION RESULTS

Following figures shows the synthesis result:

IV. CONCLUSION

The BIST architecture proposed is implemented using
VHDL language and tested on various faulty circuits. Then
design has been synthesised on Xilinx and fault has been
created and simulated on Modelsim. Special testing for
embedded memory MARCH-Y algorithm has been tested
for coupling fault, stuck at on fault, stuck at zero faults.

REFERENCES
[1] Digital system testing & testability. Abromovici.

[2] L.T. Wang, Cheng- Wen Wu and Xiaoqing Wen, “VLSI Test
Principles & Architectures Design for testability”.

[3] Wu- Tung Cheng, Manish Sharma, Thomas Rinderknecht, Liyang
Lai and Chrisshill, “Signature based diagnosis for logic BIST”, ITC,
2006.

[4] N. Tamarapalli and J. Rajski, “Constructive Multi- Phase Test Point
Insertion for Scan-Based BIST”, Proc. of International Test
Conference, pp. 649-658, 1996.

[5] A. Hassan, J. Rajski, R. Thompson and N. Tamarapalli, “Method
and Apparatus for At-Speed Testing of Digital Circuits”, US patent
pending.

[6] B. Nadeau-Dostie, D. Burek and A. Hassan, “Scan-BIST: A
Multifrequency Scan-Based BIST Method”, IEEE Design &Test of
Computers, pp. 7-17, Vol. 11, No. 1, Spring 1994.

