
IJDACR

 ISSN: 2319-4863

International Journal of Digital Application & Contemporary research

Website: www.ijdacr.com (Volume 2, Issue 7, February 2014)

Comparative Analysis of Accuracy Prediction using Fuzzy

C-Means and KNN Clasiffier

Anil Kumar Singh

NIET, Greater Noida

Rajkumar Goel

NIET, Greater Noida

Pankaj Kumar

NIET, Gretaer Noida

Abstract –Software quality and reliability have

become the main concern during the software

development. It is very difficult to develop software

without any fault. The fault-proneness of a software

module is the probability that the module contains

faults and a software fault is a defect that causes

software failures in an executable project. Early

detection of fault prone software components enables

verification experts to concentrate their time and

resources on the problem areas of the software

systems under development. In this paper,

performance comparison of a Software Fault

Prediction System uses two methods; Fuzzy c-means

clustering approach and k-Nearest Neighbors

Classifier technique, have been performed with the

real time data set named PC1, taken from NASA

MDP software projects. The performance is recorded

on the basis of accuracy, net reliability, RMSE and

MAE values.

Keywords –Accuracy, Fuzzy c-means, k-Nearest

Neighbors Classifier, NASA MDP, MAE, Reliability,

RMSE and Software Fault Prediction.

I. INTRODUCTION
A fault is a defect, an error in source code that

causes failures when executed. A fault prone

software module is the one containing more

number of expected faults. Accurate prediction of

fault prone modules enables the verification and

validation activities focused on the critical software

components. Clustering is defined as the

classification of data or object into diverse groups.

It can also be mentioned to as partitioning of a data

set into diverse subsets. In hierarchical clustering

the data are not partitioned into a particular cluster

in a single step. But a series of partitions takes

place, which may vary from a single cluster

comprising all objects to n clusters each containing

a single object.

A software fault is a defect that causes

software failure in an executable product. For each

execution of the software program where the output

is incorrect, we observe a failure. Software

engineers distinguish software faults from software

failures. Faults in software systems continue to be a

major problem. Various systems are delivered to

users with excessive faults. This is despite a huge

amount of development effort going into fault

reduction in terms of quality control and testing. It

has long been recognized that seeking out fault-

prone parts of the system and targeting those parts

for increased quality control and testing is an

effective approach to fault reduction.

An inadequate amount of valuable work in this area

has been carried out previously. Regardless of this

it is difficult to identify a reliable approach to

identifying fault-prone software components. Using

software complexity measures, the techniques build

models, which categorize components as likely to

contain faults or not.

In the last five decades data from various

natural and social sources are stored in massive and

complex databases for fast access of information

and communication technologies. The clustered

data holds various significant parameters to make it

compatible in many range. For example, the code

of biological information is stored in the sequence

of DNA and RNA [1]. While the web documents

are structured in the format of XML and HTML

[2]. However it is nearly impossible to analyse the

data by handwork considering speed and accuracy

hence various data mining algorithms are designed

in order to fetch data by pre-defined computational

work.

The main objective of this paper is to

design a Software Fault Prediction System using

Fuzzy c-means clustering approach and k-Nearest

Neighbors Classifier. The results after

classification of software fault data come in terms

of certain efficiency parameters like Accuracy,

Reliability, Mean Absolute Error, and Root Mean

Squared Error in order to compare all the

approaches.

II. SOFTWARE FAULT PREDICTION SYSTEM

Since it is necessary to have the clear distinctions

in faults hence IEEE Standard Glossary of

Software Engineering Terminology is followed.

According to the library definitions if the mistake

is human made that generates an incorrect result, a

IJD
ACR

IJDACR

 ISSN: 2319-4863

International Journal of Digital Application & Contemporary research

Website: www.ijdacr.com (Volume 2, Issue 7, February 2014)

software fault will occur with the manifestation of

error, that would lead to the software failure which

results into an inability of system or component to

perform its operations within specified parameters

[6]. A defect and the fault term is common in

hardware and engineering systems. Here, we are

using the term fault for software errors caused

generally by coding segment. These mistakes are

surfaced in the testing portion at system and unit

level. Although the anomalies reported by the

testing process could mark the software as a fail,

but we are focusing on the term fault (it is expected

that all reported anomalies are tracked in coding

level). In other words, software faults are referred

to the pre-release faults, which is similar to the

approach proposed by Fenton and Ohlsson [4].

Software fault prediction is one of the quality

assurance activities in Software Quality

Engineering such as formal verification, fault

tolerance, inspection, and testing. Software metrics

[14, 15] and fault data (faulty or non-faulty

information) belonging to a previous software

version are used to build the prediction model. The

fault prediction process usually includes two

consecutive steps: training and prediction. In the

training phase, a prediction model is built with

previous software metrics (class or method-level

metrics) and fault data belonging to each software

module. After this phase, this model is used to

predict the fault-proneness labels of modules that

locate in a new software version. Recent advances

in software fault prediction allow building defect

predictors with a mean probability of detection of

71% and mean false alarm rates of 25% [16]. These

rates are at an acceptable level and this quality

assurance activity is expected to quickly achieve

widespread applicability in the software industry.

III. PROPOSED METHODOLOGY

The methodology consists of the following steps:

1. Find the structural code and requirement

attributes

The first step is to find the structural code and

requirement attributes of software systems i.e.

software metrics. The real time defect data sets are

taken from the NASA’s MDP (Metric Data

Program) data repository, [online] Available:

http://mdp.ivv.nasa.gov.in named as PC1 dataset

which is collected from a flight software from an

earth orbiting satellite coded in C programming

language, containing 1107 modules and only 109

have their requirements specified. PC1 has 320

requirements available and all of them are

associated with program modules. All these data

sets varied in the percentage of defect modules,

with the PC1 dataset containing the least number of

defect modules.

2.Select the suitable metric values as

representation of statement

The Suitable metric values used are fault and

without fault attributes, we set these values in

database create in MATLAB R2010 A as 0 and 1.

Means 0 for data with fault and 1 for data without

fault. The metrics in these datasets (NASA MDP

dataset) describe projects which vary in size and

complexity, programming languages, development

processes, etc. When reporting a fault prediction

modelling experiment, it is important to describe

the characteristics of the datasets. Each data set

contains twenty-one software metrics, which

describe product’s size, complexity and some

structural properties. We use only fault and without

attributes to classify the selected NASA MDP PC1

dataset.Also the product metrics and product

module metrics available in dataset which can also

be use are the product requirement metrics are as

follows:

 Module

 Action

 Conditional

 Continuance

 Imperative

 Option

 Risk_Level

 Source

 Weak_Phrase

The product module metrics are as follows:

1. Module

2. Loc_Blank

3. Branch_Count

4. Call_Pairs

5. LOC_Code_and_Comment

6. LOC_Comments

7. Condition_Count

8. Cyclomatic_complexity

9. Cyclomatic_Density

10. Decision_Count

11. Edge_Count

12. Essential_Complexity

13. Essential_Density

14. LOC_Executable

15. Parameter_Count

16. Global_Data_Complexity

17. Global_Data_Density

18. Halstead_Content

19. Halstead_Difficulty

20. Halstead_Effort

IJD
ACR

IJDACR

 ISSN: 2319-4863

International Journal of Digital Application & Contemporary research

Website: www.ijdacr.com (Volume 2, Issue 7, February 2014)

21. Halstead_Error_EST

22. Halstead_Length

23. Halstead_Prog_Time

24. Halstead_Volume

25. Normalized_Cyclomatic_Complexity

26. Num_Operands

27. Num_Operators

28. Num_Unique_Operands

29. Num_Unique_Operators

30. Number_Of_Lines

31. Pathological_Complexity

32. LOC_Total

In this paper we have developed a software fault

prediction module using two methods:

 Fuzzy c-means clustering (FCM)

approach.

 K-Nearest Neighbors classifier approach

Figure 1, and 2show flow diagrams for Fuzzy c-

means clustering approach amd K-Nearest

Neighbors classifier respectively.

PC1 software fault database is used

available at NASA’s research website.

 In the first method Fuzzy c-means clustering

approach is used to detect any fault present

in the data.

 In the second method K-Nearest Neighbors

classifier approach is used to detect any

fault present in the data.

Figure 1: Flow diagram for Fuzzy C-means clustering Approach

Figure 2: Flow diagram for K-Nearest Neighbors classifier

Approach

Fuzzy C-Means Clustering

Objective function based fuzzy clustering

algorithms such as the fuzzy c-means (FCM)

algorithm has been used extensively for different

tasks such as pattern recognition, data mining, and

image processing and fuzzy modeling.

In fuzzy clustering, each point has a degree of

belonging to clusters, as in fuzzy logic, rather than

belonging completely to just one cluster. Thus,

points on the edge of a cluster, maybe in the cluster

to a lesser degree than points in the centre of

cluster. An overview and comparison of different

fuzzy clustering algorithms are available.

With fuzzy c-means, the centroid of a cluster is the

mean of all points, weighted by their degree of

belonging to the cluster:

𝑐𝑘 =
∑𝑥𝑤𝑘(𝑥)𝑥

∑𝑥𝑤𝑘(𝑥)

The degree of belonging,𝑤𝑘(𝑥), is related inversely

to the distance from x to the cluster center as

calculated on the previous pass. It also depends on

a parameter m that controls how much weight is

given to the closest center. The fuzzy c-means

algorithm is very similar to the k-means algorithm:

1. Choose a number of clusters.

2. Assign randomly to each point coefficients for

being in the clusters.

3. Repeat until the algorithm has converged (that

is, the coefficients' change between two

iterations is no more than, the given

sensitivity threshold) :

Fault Data

(PC1 data set)
Visit Database Site

K-Nearest Neighbors classifier

Result in terms of:

1. Accuracy

2. Mean Absolute Error

3. Net Reliability

4. Root Mean Squared Error

It classifies the

given data if

there is any fault

present in it.

Fault Data

(PC1 data set)
Visit Database Site

Fuzzy C-Means Clustering

Result in terms of:

1. Accuracy

2. Mean Absolute Error

3. Net Reliability

4. Root Mean Squared Error

It classifies the

given data if

there is any fault

present in it.

IJD
ACR

http://nasa-softwaredefectdatasets.wikispaces.com/home
http://nasa-softwaredefectdatasets.wikispaces.com/home

IJDACR

 ISSN: 2319-4863

International Journal of Digital Application & Contemporary research

Website: www.ijdacr.com (Volume 2, Issue 7, February 2014)

 Compute the centroid for each cluster,

using the formula above.

 For each point, compute its coefficients of

being in the clusters, using the formula

above.

The algorithm minimizes intra-cluster variance as

well, but has the same problems as k-means; the

minimum is a local minimum, and the results

depend on the initial choice of weights. Using a

mixture of Gaussians along with the expectation-

maximization algorithm is a more statistically

formalized method which includes some of these

ideas: partial membership in classes.

Algorithmic steps for Fuzzy c-means clustering:

Let 𝑋 = {𝑥1, 𝑥2, 𝑥3 . . . , 𝑥𝑛} be the set of data

points and 𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑐} be the set of

centers.

1) Randomly select ‘c’ cluster center.

2) Calculate the fuzzy membership 𝜇𝑖𝑗 using:

𝜇𝑖𝑗 = 1/ ∑(𝑑𝑖𝑗/𝑑𝑖𝑘)(2/(𝑚−1))

𝑐

𝑘=1

3) Compute the fuzzy center𝑣𝑗 ' using:

𝑣𝑗 =
(∑ 𝜇𝑖𝑗

𝑚𝑥𝑖
𝑛
𝑖=1)

∑ 𝜇𝑖𝑗
𝑚𝑛

𝑖=1

∀𝑗= 1,2, … 𝑐

4) Repeat step 2) and 3) until the minimum 'J' value

is achieved or ||𝑈(k+1) − 𝑈(𝑘)|| < 𝛽.
 Where,

‘k’ is the iteration step.

‘β’ is the termination criterion between (0, 1).

‘𝑈 = (𝜇𝑖𝑗)𝑛∗𝑐 ’ Is the fuzzy membership matrix.

‘J’ is the objective function.

k-Nearest Neighbors Classifier

In pattern recognition, the k-Nearest Neighbors

algorithm (k-NN) is a non-parametric method used

for classification and regression. In both cases, the

input consists of the k closest training examples in

the feature space. The output depends on whether

k-NN is used for classification or regression:

 In k-NN classification, the output is a class

membership. An object is classified by a

majority vote of its neighbors, with the object

being assigned to the class most common

among its k nearest neighbors (k is a positive

integer, typically small). If k = 1, then the

object is simply assigned to the class of that

single nearest neighbor.

 In k-NN regression, the output is the property

value for the object. This value is the average

of the values of its k nearest neighbors.

k-Nearest neighbor is an example of instance-based

learning, in which the training data set is stored, so

that a classification for a new unclassified record

may be found simply by comparing it to the most

similar records in the training set.

Given a query point x, it is ensured that

the instances in a database are not revealed to other

databases in the nearest neighbor selection, and that

the local classification of each database is not

revealed to other databases during global

classification.

In order to determine the points in their

database that are among the k nearest neighbors of

x, each node calculates k smallest distances

between x and the points in their database (locally).

After each node determines the points in

its database which are within the kth nearest

distance from x, each node computes a local

classification vector of the query instance where

the ith element is the amount of vote the ith class

received from the points in this node’s database

which are among the k nearest neighbors of x.

A very common thing to do is weighted

kNN where each point has a weight which is

typically calculated using its distance. For eg.

under inverse distance weighting, each point has a

weight equal to the inverse of its distance to the

point to be classified. This means that neighboring

points have a higher vote than the farther points.

It is quite obvious that the accuracy might

increase on increasing k but the computation cost

also increases.

IV. SIMULATION AND RESULTS

In this paper, training and testing methodology is

being used, wherein a project is chosen for training

the system. The NASA MDP dataset named PC1 is

used in this. Then Fuzzy C-means Clustering and

k-nearest neighbour classifier approach is applied

on the same project and the final calculated values

are then used to classify the modules of project as

fault prone or fault free.

Simulation is carried out using MATLAB 2010a.

Table 1: Performance comparison for Fuzzy C-means and k-

Nearest Neighbors Classifier

Evaluation

Parameter

Fuzzy c-means

Approach

k-Nearest

Neighbors

Classifier

Accuracy 79.24 88.31

Reliability 60.07 81.38

Mean Absolute

Error (MAE)

0.25

0.11

Root Mean Squared

Error (RMSE)

0.083

0.124

IJD
ACR

IJDACR

 ISSN: 2319-4863

International Journal of Digital Application & Contemporary research

Website: www.ijdacr.com (Volume 2, Issue 7, February 2014)

V. CONCLUSION
In this paper, the Software Fault Prediction System

is implemented using Fuzzy C-means clustering

amd k-Nearest Neighbors Classifier technique. It

was found that the k-Nearest Neighbors Classifier

method gives more accuracy and less errors as

compared to Fuzzy C-means clustering method on

the basis of evaluation parameters: accuracy,

reliability, MSE and RMSE.

REFERENCE
[1] Jaakkola T., and Haussler D., “Exploiting generative

models in discriminative classifiers”, In Advances in

Neural Information Processing Systems 1, MIT
Press, pp. 487–493, 1998.

[2] Kazama J., and Tsujii J., “Evaluation and extension

of maximum entropy models with in equality
constraints”, Proceedings of 2003 Conference on

Empirical Methods in Natural Language Processing
(EMNLP2003), pp. 137–144, 2003.

[3] Anderberg M. R., Cluster Analysis for Applications,

Academic Press, New York, 1973.
[4] N. E. Fenton and N. Ohlsson. Quantitative analysis

of faults and failures in a complex software system.

IEEE Transactions on Software Engineering,

26(8):797–814, 2000.

[5] Michael R. Anderberg. Cluster analysis for

applications. Academic Press, 1973.
[6] Section 13.4 of Mardia et al., 1979, and Section 2 of

Veltkamp and Hagedoorn, 2000.

[7] Sections 13.4 and 14.2.3 of Mardia et al., 1979.
[8] Martin Ester, Hans-Peter Kriegel, Jörg Sander,

Xiaowei Xu, " A Density-Based Algorithm for

Discovering Clusters in Large Spatial Databases with
Noise" Proceedings of 2nd International Conference

on Knowledge Discovery and Data Mining (KDD-

96).
[9] Nam Hun Park Won Suk Lee, "Statistical Grid-based

Clustering over Data Streams". SIGMOD Record,

Vol. 33, No. 1, March 2004.
[10] Paul S. Bradley, Usama Fayyad, and Cory Reina.

Scaling EM (Expectation-Maximization) Clustering

to Large Databases. Technical Report MSR-TR-98-

35, Microsoft Research, Redmond, WA, USA,

October 1999.

[11] Binu Thomas, Raju G., and Sonam Wangmo, “A
Modified Fuzzy C-Means Algorithm for Natural

Data Exploration” World Academy of Science,

Engineering and Technology 25 2009.
[12] Bose S.K., “Presenting a Novel Neural Network

Architecture for Membrane Protein Prediction”,

Intelligent Engineering Systems, INES’06,
Proceedings. International Conference, 2006.

[13] Yuan Chen, “Research on software defect prediction

based on data mining”, IEEE 2nd International
Conference on Computer and Automation

Engineering (ICCAE), 2010.

[14] N. E. Fenton and N. Ohlsson. Quantitative analysis
of faults and failures in a complex software system.

IEEE Transactions on Software Engineering,

26(8):797–814, 2000.

[15] N. E. Fenton and M. Neil. A critique of software

defect prediction models. IEEE, Transactions on

Software Engineering, 25(5):675–689, 1999.

[16] Pei Wang, “Software Defect Prediction Scheme
Based on Feature Selection”, IEEE, International

Symposium on Information Science and Engineering

(ISISE), 2012.
[17] Qinbao Song, “Software defect association mining

and defect correction effort prediction”, IEEE

Transactions on Software Engineering, Vol. 32,
Issue: 2, February 2006.

[18] Lanubile F., Lonigro A., and Visaggio G.,

“Comparing Models for Identifying Fault-Prone
Software Components”, Proceedings of Seventh

International Conference on Software Engineering

and Knowledge Engineering, 1995, pp. 12-19, 1995.

[19] T.M. Khoshgaftaar, E.D. Allen, J.P. Hudepohl, S.J.

Aud, “Application of neural networks to software

quality modeling of a very large telecommunications
system”, IEEE Transactions on Neural Networks,

8(4), pp. 902-909, 1997.

[20] Saida Benlarbi, Khaled El Emam, Nishith Geol,
“Issues in Validating Object-Oriented Metrics for

Early Risk Prediction”, by Cistel Technology,
Ontario Canada, 1999.

[21] Runeson, Claes Wohlin, Magnus C. Ohlsson, “A

Proposal for Comparison of Models for Identification
of FaultProneness”, Dept. of Communication

Systems, Lund University, Profes 2001, pp. 341-355,

2001.

IJD
ACR

