
IJDACR

 ISSN: 2319-4863

International Journal of Digital Application & Contemporary research

Website: www.ijdacr.com (Volume 3, Issue 6, January 2015)

PSO Optimized Software Fault Prediction system

using Fuzzy C-Means

Dazy Arya

M. Tech. Scholar, Computer Science Dept.

Rajasthan College of Engineering for Women,

Jaipur India

dazyarya@gmail.com

Dr. Rajeev Yadav

Principal, Rajasthan College of Engineering

for Women,

Jaipur India

yadavrajeev6@gmail.com

Abstract –Early detection of fault prone software

components enables verification experts to concentrate

their time and resources on the problem areas of the

software systems under development. In this paper,

performance comparison of a Software Fault

Prediction System using Fuzzy c-means clustering

approach and a hybrid technique (Combination of

Fuzzy c-means and Particle Swarm Optimization) a

has been performed with the real time data set named

PC1, taken from NASA MDP software projects. The

performance is recorded on the basis of accuracy,

reliability, RMSE and MAE values.

Keywords – Fault-Proneness, Fuzzy C-Means, Particle

Swarm Optimization, NASA MDP, etc.

I. INTRODUCTION
Faults are major problem in software systems that

need to be resolved. Fault is a flaw that results in

failure. We should have to know the clear

difference between bug, fault and failure. Failure

is deviation of software actions from the expected

outcomes. A fault in software is a flaw that results in

failure. Bug occurs when specified requirements of

the software do not conform. There are many

number of software having number of faults are

delivered to the market [1].

A fault is a defect, an error in source code

that causes failures when executed. A fault prone

software module is the one containing more number

of expected faults. Accurate prediction of fault

prone modules enables the verification and

validation activities focused on the critical software

components.

A software fault is a defect that causes

software failure in an executable product. For each

execution of the software program where the output

is incorrect, we observe a failure. Software

engineers distinguish software faults from software

failures. Faults in software systems continue to be a

major problem. Various systems are delivered to

users with excessive faults. This is despite a huge

amount of development effort going into fault

reduction in terms of quality control and testing. It

has long been recognized that seeking out fault-

prone parts of the system and targeting those parts

for increased quality control and testing is an

effective approach to fault reduction. An inadequate

amount of valuable work in this area has been

carried out previously. Regardless of this it is

difficult to identify a reliable approach to identifying

fault-prone software components. Using software

complexity measures, the techniques build models,

which categorize components as likely to contain

faults or not.

Till now there are proposed numerous

methods for data clustering methods. The algorithms

provide a satisfying measure for the classification

and mining of data. The software fault prediction is

also now using the data clustering techniques

because of the features and the functions they are

expected to deliver. The clustering techniques till

now have solved many purposes yet the satisfying

result could not be guaranteed. In this research work,

we have tried to modify the previous algorithms for

the better results. We do not say that it is the end of

research in this segment but it will definitely provide

the new researchers with the scope to bring new

considerations that could serve the future demands.

The main objective of this paper is to

design a Software Fault Prediction System using

Fuzzy c-means clustering approach and a hybrid

technique (combination of Fuzzy c-means and

Particle Swarm Optimization). The results after

classification of software fault data come in terms of

certain efficiency parameters like Accuracy,

Reliability, Mean Absolute Error, and Root Mean

Squared Error in order to compare both approaches.

mailto:dazyarya@gmail.com
mailto:yadavrajeev6@gmail.com

IJDACR

 ISSN: 2319-4863

International Journal of Digital Application & Contemporary research

Website: www.ijdacr.com (Volume 3, Issue 6, January 2015)

II. PROPOSED METHODOLOGY

1. Find the structural code and requirement

attributes

The first step is to find the structural code and

requirement attributes of software systems i.e.

software metrics. The real time defect data sets are

taken from the NASA’s MDP (Metric Data

Program) data repository, [online] Available:

http://mdp.ivv.nasa.gov.innamed as PC1 dataset

which is collected from a flight software from an

earth orbiting satellite coded in C programming

language, containing 1107 modules and only 109

have their requirements specified. PC1 has 320

requirements available and all of them are associated

with program modules. All these data sets varied in

the percentage of defect modules, with the PC1

dataset containing the least number of defect

modules.

2. Select the suitable metric values as

representation of statement

The Suitable metric values used are fault and

without fault attributes, we set these values in

database create in MATLAB R2010 A as 0 and 1.

Means 0 for data with fault and 1 for data without

fault. The metrics in these datasets (NASA MDP

dataset) describe projects which vary in size and

complexity, programming languages, development

processes, etc. When reporting a fault prediction

modelling experiment, it is important to describe the

characteristics of the datasets. Each data set contains

twenty-one software metrics, which describe

product’s size, complexity and some structural

properties. We use only fault and without attributes

to classify the selected NASA MDP PC1 dataset.

Also the product metrics and product module

metrics available in dataset which can also be use are

the product requirement metrics are as follows:

 Module

 Action

 Conditional

 Continuance

 Imperative

 Option

 Risk_Level

 Source

 Weak_Phrase

The product module metrics are as follows:

1. Module

2. Loc_Blank

3. Branch_Count

4. Call_Pairs

5. LOC_Code_and_Comment

6. LOC_Comments

7. Condition_Count

8. Cyclomatic_complexity

9. Cyclomatic_Density

10. Decision_Count

11. Edge_Count

12. Essential_Complexity

13. Essential_Density

14. LOC_Executable

15. Parameter_Count

16. Global_Data_Complexity

17. Global_Data_Density

18. Halstead_Content

19. Halstead_Difficulty

20. Halstead_Effort

21. Halstead_Error_EST

22. Halstead_Length

23. Halstead_Prog_Time

24. Halstead_Volume

25. Normalized_Cyclomatic_Complexity

26. Num_Operands

27. Num_Operators

28. Num_Unique_Operands

29. Num_Unique_Operators

30. Number_Of_Lines

31. Pathological_Complexity

32. LOC_Total

Figure 1 and 2 show flow diagrams for Fuzzy c-

means clustering approach and hybrid approach

respectively.

Figure 1: Flow diagram for Fuzzy C-means clustering Approach

Fault Data

(PC1 data set)
Visit Database Site

Fuzzy C-Means Clustering

Result in terms of:

 Accuracy

 Mean Absolute Error

 Net Reliability

 Root Mean Squared Error

It classifies the given

data if there is any fault

present in it.

http://mdp.ivv.nasa.gov.in/
http://nasa-softwaredefectdatasets.wikispaces.com/home

IJDACR

 ISSN: 2319-4863

International Journal of Digital Application & Contemporary research

Website: www.ijdacr.com (Volume 3, Issue 6, January 2015)

Figure 2: Flow diagram for hybrid (PSO-Fuzzy C-Means)

technique

In this paper we have developed a software fault

prediction module using two methods:

 Fuzzy c-means clustering (FCM) approach.

 Hybrid technique (combination of Fuzzy c-

means and Particle Swarm Optimization).

PC1 software fault database is used available at

NASA’s research website. In the first method Fuzzy

c-means clustering approach is used to detect any

fault present in the data. In the hybrid approach, PSO

optimizes the ‘exponent’ and ‘number of clusters’

for FCM approach and then FCM classifies the

dataset in order to make an efficient and supervised

classification model.

Fuzzy C-Means Clustering

Fuzzy C-Means iteratively moves the cluster centers

to the “right” location within a data set. Objective

function based fuzzy clustering algorithms such as

the fuzzy c-means (FCM) algorithm has been used

extensively for different tasks such as pattern

recognition, data mining, and image processing and

fuzzy modeling.

In general, cluster analysis refers to a broad

spectrum of methods which try to subdivide a data

set X into c subsets (clusters) which are pairwise

disjoint, all nonempty, and reproduce X through

union. The clusters then are termed a hard (i.e., non-

fuzzy) c-partition of X.

Parameters of the FCM Algorithm

Number of Clusters: The number of clusters c is the

most important parameter, in the sense that the

remaining parameters have less influence on the

resulting partition. When clustering real data

without any a priori information about the structures

in the data, one usually has to make assumptions

about the number of underlying clusters. The chosen

clustering algorithm then searches for c clusters,

regardless of whether they are really present in the

data or not. Two main approaches to determining the

appropriate number of clusters in data can be

distinguished:

A. Validity measures: Validity measures are

scalar indices that assess the goodness of

the obtained partition. Clustering

algorithms generally aim at locating

wellseparated and compact clusters. When

the number of clusters is chosen equal to

the number of groups that actually exist in

the data, it can be expected that the

clustering algorithm will identify them

correctly. When this is not the case,

misclassifications appear, and the clusters

are not likely to be well separated and

compact. Hence, most cluster validity

measures are designed to quantify the

separation and the compactness of the

clusters.

B. Iterative merging or insertion of clusters:

The basic idea of cluster merging is to start

with a sufficiently large number of clusters,

and successively reduce this number by

merging clusters.

Fuzziness Parameter: The weighting exponent 𝑚 is

a rather important parameter as well, because it

significantly influences the fuzziness of the resulting

partition.

Termination Criterion: The FCM algorithm stops

iterating when the norm of the difference between U

in two successive iterations is smaller than the

termination parameter 𝜖. For the maximum

norm 𝑚𝑎𝑥𝑖𝑘(|𝜇𝑖𝑘
(𝑙)

− 𝜇𝑖𝑘
(𝑙−1)

|). The usual choice is

𝜖 = 0.001, even though 𝜖 = 0.01 works well in

most cases, while drastically reducing the

computing times.

Norm-Inducing Matrix: The shape of the clusters is

determined by the choice of the matrix 𝐴 in the

Fault Data

(PC1 data set)
Visit Database Site

Fuzzy C-Means Clustering

Result in terms of:

 Accuracy

 Mean Absolute Error

 Net Reliability

 Root Mean Squared Error

Initially data is passed to

Particle Swarm ptimization

in order to optimize

exponent and number of

clusters for Fuzzy c-means

clustering.

Particle Swarm Optimization

Optimized data is given to

Fuzzy C-Means clustering

block in order to classify

any fault in the system

http://nasa-softwaredefectdatasets.wikispaces.com/home

IJDACR

 ISSN: 2319-4863

International Journal of Digital Application & Contemporary research

Website: www.ijdacr.com (Volume 3, Issue 6, January 2015)

distance measure. A common choice is 𝐴 = 𝐼,

which gives the standard Euclidean norm:

𝐷𝑖𝑘
2 = (𝑧𝑘 − 𝑣𝑖)𝑇(𝑧𝑘 − 𝑣𝑖) (1)

Where 𝑣𝑖 are ordinary means of the clusters.

Let {x1, x2, . . , x𝑁} be a set of N data objects

represented by n-dimensional feature vectors.

x𝑘 = [𝑥1𝑘 , … … , 𝑥𝑛𝑘]𝑇 ∈ 𝑅𝑛 (2)

A set of N feature vectors is then denoted as a data

matrix of 𝑛 × 𝑁.

𝑋 = [

𝑥11

⋮
𝑥𝑛1

𝑥12

⋮
𝑥𝑛2

…
⋮
…

𝑥1𝑁

⋮
𝑥𝑛𝑁

] (3)

A fuzzy clustering algorithm partitions the data X

into M fuzzy clusters, forming a fuzzy partitioning.

A fuzzy partition can be conveniently represented as

a matrix, 𝑈, whose elements 𝑢𝑖𝑘 ∈ [0; 1] represents

the membership degree of 𝑥𝑘 in cluster ′𝑖′. Hence,

the 𝑖𝑡ℎ row of 𝑈 contains values of the 𝑖𝑡ℎ

membership function in the fuzzy partition.

Objective function based fuzzy clustering

algorithms minimize an objective function of the

type

𝐽(𝑋; 𝑈, 𝑉) = ∑ ∑ (𝑢𝑖𝑘)𝑚𝑑2(x𝑘, v𝑖)
𝑁
𝑘=1

𝑀
𝑖=1 (4)

Where,

𝑉 = [v1, … , v𝑀]𝑇 ∈ ℝ𝑛 (5)

is an M-tuple of cluster prototypes which have to be

determined, and 𝑚 ∈ (1; ∞) is a weighting

exponent which determines the fuzziness of the

clusters in order to avoid the trivial solution,

constraints must be forced on U.

∑ 𝑢𝑖𝑘 = 1, ∀𝑘𝑀
𝑖=1 (6)

0 < ∑ 𝑢𝑖𝑘 < 𝑁, ∀𝑖𝑁
𝑖=1 (7)

These constraints imply that the sum of each column

of U is 1. Further, there may be no empty clusters,

but the distribution of membership among the M

fuzzy subsets is not constrained. The prototypes are

typically selected to be idealized geometric forms

such as linear varieties (e.g. FCV algorithm) or

points (e.g. GK or FCM algorithms). When point

prototypes are used, the general form of the distance

measure is given by

𝑑2(x𝑘, v𝑖) = (x𝑘 − v𝑖)
𝑇𝐴𝑖(x𝑘 − v𝑖) (8)

Where the norm matrix 𝐴𝑖 is a positive definite

symmetric matrix. The FCM algorithm uses the

Euclidian distance measure, i.e. 𝐴𝑖 = 𝐼∀𝑖, while the

GK algorithm uses the Mahalonibisdistance, i.e.

𝐴𝑖 = 𝑃𝑖
−1 with 𝑃𝑖 the covariance matrix of cluster i,

and the additional volume constraint|𝐴𝑖| = 𝜌𝑖.

The FCM algorithms are best described by

recasting conditions in matrix-theoretic terms [3].

Towards this end, let U be a real 𝑐 × 𝑁 matrix, 𝑈 =
[𝑢𝑖𝑘]. 𝑈 is the matrix representation of the partition

{ 𝑌𝑖} in the situation

𝑢𝑖(y𝑘) = 𝑢𝑖𝑘 = {
1; y𝑘 ∈ 𝑌𝑖

0; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
} (9)

 ∑ 𝑢𝑖𝑘 > 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖𝑀
𝑖=1 (10)

∑ 𝑢𝑖𝑘 = 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘𝑀
𝑖=1 (11)

In equation (9), 𝑢𝑖 is a function such that: 𝑢𝑖: 𝑌 →
{0, 1}. In conventional models, 𝑢𝑖 is the

characteristic function of, 𝑌𝑖: in fact, 𝑢𝑖 and 𝑌𝑖

determine one another, so there is no harm in

labelling u; the ith hard subset of the partition (It is

unusual, of course, but is important in terms of

understanding the term “fuzzy set”). Conditions of

equations (10) and (11) are equivalent, so U is

termed a hard c-partition of Y. Generalizing this

idea, we refer to U as a fuzzy c-partition of Y when

the elements of U are numbers in the unit interval [0,

1] that continue to satisfy both equations (10) and

(11). The basis for this definition are c functions

𝑢𝑖: 𝑌 → {0, 1} whose values 𝑢𝑖(y𝑘) ∈ [0,1] are

interpreted as the grades of membership of the y𝑘s

in the “fuzzy subsets” 𝑢𝑖 of Y.

Particle Swarm Optimization (PSO)

PSO is a technique used to explore the search space

of a given problem to find the settings or parameters

required to maximize or minimize a particular

objective.

 In PSO, a neighbourhood is defined for

each individual particle as the subset of particles

which it is able to communicate with. The first PSO

model used a Euclidian neighbourhood for particle

communication, measuring the actual distance

between particles to determine which were close

enough to be in communication. This was done in

imitation of the behaviour of bird flocks, similar to

biological models where individual birds are only

able to communicate with other individuals in the

immediate vicinity. The Euclidian neighbourhood

model was abandoned in favour of less

computationally intensive models when research

focus was shifted from biological modelling to

mathematical optimization. Topological

neighbourhoods unrelated to the locality of the

particle came into use, including what has come to

be recognized as a global neighbourhood, gbest

model, where each particle is associated with and

IJDACR

 ISSN: 2319-4863

International Journal of Digital Application & Contemporary research

Website: www.ijdacr.com (Volume 3, Issue 6, January 2015)

able to obtain information from every other particle

in the swarm.

Particle Swarm Algorithm

1. Begin

2. Factor settings and swarm initialization

3. Evaluation

4. g = 1

5. While (the stopping criterion is not met) do

6. for each particle

7. Update velocity

8. revise place and localized best place

9. Evaluation

10. End For

11. Update leader (global best particle)

12. g + +

13. End While

14. End

The PSO procedure has various phases consist of

Initialization, Evaluation, Update Velocity and

Update Position. Equation (12) is used for updating

the velocity:

𝑣1(𝑡) = 𝑤𝑣𝑙(𝑡 − 1)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑖𝑛𝑒𝑟𝑡𝑖𝑎

+
𝑐1𝑟1(𝑥1

#(𝑡 − 1) − 𝑥𝑙(𝑡 − 1)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅)

𝑃𝑒𝑟𝑠𝑜𝑛𝑎𝑙 𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒

+
𝑐2𝑟2(𝑥∗(𝑡 − 1) − 𝑥𝑙(𝑡 − 1)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅)

𝑆𝑜𝑐𝑖𝑎𝑙 𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒

(12)

Figure 3: Flow chart of PSO

III. SIMULATION AND RESULTS

Simulation is carried out using MATLAB 2010a:

Figure 4: Graphical User Interface (GUI) for proposed work

Figure 5: Input PC1 dataset with attributes (fault and without

fault)

Figure 6: Input PC1 dataset with fault attributes when separating

fault attributes from input data

No

Start

Generation on initial searching points of each agent

Evaluation of searching

points of each agent

Modification of each searching

points by state equation

Reach maximum iteration

Stop

IJDACR

 ISSN: 2319-4863

International Journal of Digital Application & Contemporary research

Website: www.ijdacr.com (Volume 3, Issue 6, January 2015)

Figure 7: Input PC1 dataset with without fault attributes when

separating without fault attributes from input data

Figure 8: Data Input (PC1 database without attributes)

Figure 9: Accuracy graph with FCM approach

Figure 10: Accuracy graph with PSO-FCM based hybrid

approach

Table 1: Performance comparison for Fuzzy C-means and

Hybrid (PSO-Fuzzy C-means) technique

Evaluation

Parameter

Fuzzy c-means

Approach

Hybrid (PSO-

FCM) Approach

Accuracy 79.24 99.14

Net Reliability 60.07 47.20

Mean Absolute

Error (MAE)

0.25 0.13

Root Mean

Squared Error

(RMSE)

0.083 0.019

IV. CONCLUSION

In this paper, a Software Fault Prediction System is

implemented using Fuzzy C-means clustering and

hybrid (Fuzzy c-means + PSO) techniques. Fuzzy

clustering based techniques are discussed for the

comparative analysis in order to predict level of

impact of faults in NASA’s public domain defect

dataset. Predicting faults in the software life cycle

can be used to improve software process control and

achieve high software reliability. It was found that

the hybrid method gives more accuracy and less

errors as compared to Fuzzy C-means clustering

method on the basis of evaluation parameters:

accuracy, reliability, MSE and RMSE.

REFERENCES
[1] Jaakkola T., and Haussler D., “Exploiting generative

models in discriminative classifiers”, In Advances in

Neural Information Processing Systems 1, MIT Press,

pp. 487–493, 1998.
[2] Kazama J., and Tsujii J., “Evaluation and extension of

maximum entropy models with in equality

constraints”, Proceedings of 2003 Conference on

Empirical Methods in Natural Language Processing

(EMNLP2003), pp. 137–144, 2003.

IJDACR

 ISSN: 2319-4863

International Journal of Digital Application & Contemporary research

Website: www.ijdacr.com (Volume 3, Issue 6, January 2015)

[3] Anderberg M. R., Cluster Analysis for Applications,

Academic Press, New York, 1973.
[4] N. E. Fenton and N. Ohlsson. Quantitative analysis of

faults and failures in a complex software system.

IEEE Transactions on Software Engineering,
26(8):797–814, 2000.

[5] Michael R. Anderberg. Cluster analysis for

applications. Academic Press, 1973.
[6] Section 13.4 of Mardia et al., 1979, and Section 2 of

Veltkamp and Hagedoorn, 2000

[7] Sections 13.4 and 14.2.3 of Mardia et al., 1979
[8] Martin Ester, Hans-Peter Kriegel, Jörg Sander,

Xiaowei Xu, " A Density-Based Algorithm for

Discovering Clusters in Large Spatial Databases with
Noise" Proceedings of 2nd International Conference

on Knowledge Discovery and Data Mining (KDD-

96).
[9] Nam Hun Park Won Suk Lee, "Statistical Grid-based

Clustering over Data Streams". SIGMOD Record,

Vol. 33, No. 1, March 2004.
[10] Paul S. Bradley, Usama Fayyad, and Cory Reina.

Scaling EM (Expectation-Maximization) Clustering

to Large Databases. Technical Report MSR-TR-98-
35, Microsoft Research, Redmond, WA, USA,

October 1999.

[11] Binu Thomas, Raju G., and Sonam Wangmo, “A
Modified Fuzzy C-Means Algorithm for Natural Data

Exploration” World Academy of Science,

Engineering and Technology 25 2009.
[12] Bose S.K., “Presenting a Novel Neural Network

Architecture for Membrane Protein Prediction”,

Intelligent Engineering Systems, INES’06,
Proceedings. International Conference, 2006.

[13] Yuan Chen, “Research on software defect prediction

based on data mining”, IEEE 2nd International
Conference on Computer and Automation

Engineering (ICCAE), 2010.

[14] N. E. Fenton and N. Ohlsson. Quantitative analysis of
faults and failures in a complex software system.

IEEE Transactions on Software Engineering,

26(8):797–814, 2000.
[15] N. E. Fenton and M. Neil. A critique of software

defect prediction models. IEEE, Transactions on

Software Engineering, 25(5):675–689, 1999.
[16] Pei Wang, “Software Defect Prediction Scheme

Based on Feature Selection”, IEEE, International

Symposium on Information Science and Engineering
(ISISE), 2012.

[17] Qinbao Song, “Software defect association mining
and defect correction effort prediction”, IEEE

Transactions on Software Engineering, Vol. 32, Issue:

2, February 2006.
[18] Lanubile F., Lonigro A., and Visaggio G.,

“Comparing Models for Identifying Fault-Prone

Software Components”, Proceedings of Seventh
International Conference on Software Engineering

and Knowledge Engineering, 1995, pp. 12-19, 1995.

[19] T.M. Khoshgaftaar, E.D. Allen, J.P. Hudepohl, S.J.
Aud, “Application of neural networks to software

quality modeling of a very large telecommunications

system”, IEEE Transactions on Neural Networks,
8(4), pp. 902-909, 1997.

[20] Saida Benlarbi, Khaled El Emam, Nishith Geol,

“Issues in Validating Object-Oriented Metrics for
Early Risk Prediction”, by Cistel Technology, Ontario

Canada, 1999.

[21] Runeson, Claes Wohlin, Magnus C. Ohlsson, “A
Proposal for Comparison of Models for Identification

of FaultProneness”, Dept. of Communication

Systems, Lund University, Profes 2001, pp. 341-355,

2001.
[22] Jiang, Y., Cukic, B., Menzies, T., “Fault Prediction

Using Early Lifecycle Data”, In the 18th IEEE

Symposium on Software Reliability Engineering
(ISSRE 2007), IEEE Computer Society, Sweden, pp.

237-246, 2007.

[23] Mahaweerawat A., “Fault-Prediction in object
oriented software’s using neural network techniques”,

Advanced Virtual and Intelligent Computing Center

(AVIC), Department of Mathematics,Faculty of
Science, Chulalongkorn University, Bangkok,

Thailand, pp. 1-8, 2004.

[24] Bellini, P., “Comparing Fault-Proneness Estimation
Models”, 10th IEEE International Conference on

Engineering of Complex Computer Systems

(ICECCS'05), vol. 0, 2005, pp. 205-214, 2005.
[25] Nurudeen Sherif, Nurudeen Mohammed, " Using

Fuzzy Clustering and Software Metrics to Predict

Faults in large Industrial Software Systems" IOSR
Journal of Computer Engineering (IOSR-JCE) e-

ISSN: 2278-0661, ISSN: 2278-8727, Volume 13,

Issue 6, PP 32-36, Jul. - Aug. 2013.
[26] Supreet Kaur, and Dinesh Kumar, "Software Fault

Prediction in Object Oriented Software Systems

Using Density Based Clustering Approach".
International Journal of Research in Engineering and

Technology (IJRET), ISSN: 2277-4378, Vol. 1, No. 2

March 2012.
[27] Neeraj Mohan, Parvinder S. Sandhu, and Hardeep

Singh, " Impact of Faults in Different Software

Systems: A Survey" World Academy of Science,
Engineering and Technology, 2009.

[28] Thomas J. Ostrand and Elaine J. Weyuker, "A Tool

for Mining Defect Tracking Systems to Predict Fault-
Prone Files", 1st international workshop on mining

software repositories, pp. 85-89, 2005.

[29] Brian Randell, “Facing Up to Faults”, The Computer
Journal, Vol. 43, January 2000.

[30] Supreet Kaur, Dinesh Kumar, “Quality Prediction of

Object Oriented Software Using Density Based
Clustering Approach”, IACSIT International Journal

of Engineering and Technology, Vol.3, No.4, August

2011.
[31] Fuzzy C-means (FCM) algorithm, online available at:

http://hayoungkim.tistory.com/20.

