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Abstract— Wireless mesh networks are a promising technology 

for offering ubiquitous Internet connectivity. These multi-hop 

wireless access networks consist of fixed and mobile nodes, which 

help each other relaying packets toward Internet gateways and 

back. This Synopsis addresses the problem of multipath routing 

in wireless mesh networks. We study the use of clustering 

algorithms to facilitate the discovery and deployment of non-

interfering multipath routes in these settings. In this context we 

propose a novel clustering based intelligent reinforcement 

learning algorithm based on Markov decision process to discover 

and maintain routes in an efficient manner and when a mesh 

node should have to sleep or awake depends upon involvement of 

mesh node in routing, aiming at minimizing interferences 

between transmissions of neighbouring nodes. The work offers an 

interesting trade-off between the signalling costs, the time 

required to set up and maintain paths, and the properties of the 

discovered paths. 

Keywords —Wireless Mesh Network, Reinforcement Learning, 

Markov Decision Process. 

I. INTRODUCTION  

A. Wireless Mess Network 
A wireless mesh network (WMN) is a communications 

network made up of radio nodes organized in a mesh 

topology. Wireless mesh networks often consist of mesh 

clients, mesh routers and gateways. The mesh clients are often 

laptops, cell phones and other wireless devices while the mesh 

routers forward traffic to and from the gateways which may, 

but need not, connect to the Internet. The coverage area of the 

radio nodes working as a single network is sometimes called a 

mesh cloud. Access to this mesh cloud is dependent on the 

radio nodes working in harmony with each other to create a 

radio network. A mesh network is reliable and offers 

redundancy. When one node can no longer operate, the rest of 

the nodes can still communicate with each other, directly or 

through one or more intermediate nodes. The animation below 

illustrates how wireless mesh networks can self-form and self-

heal. Wireless mesh networks can be implemented with 

various wireless technology including 802.11, 802.15, 802.16, 

cellular technologies or combinations of more than one type. 

 A wireless mesh network can be seen as a special 

type of wireless ad-hoc network. A wireless mesh network 

often has a more planned configuration, and may be deployed 

to provide dynamic and cost effective connectivity over a 

certain geographic area. An ad-hoc network, on the other 

hand, is formed ad hoc when wireless devices come within 

communication range of each other. The mesh routers may be 

mobile, and be moved according to specific demands arising 

in the network. Often the mesh routers are not limited in terms 

of resources compared to other nodes in the network and thus 

can be exploited to perform more resource intensive functions. 

In this way, the wireless mesh network differs from an ad-hoc 

network, since these nodes are often constrained by resources. 

 
Figure 1: A wireless mesh network connecting several stationary and mobile 

clients to the Internet 

 

B. Objective of Wireless Sensor Network 

Energy awareness is critical, especially in situations where it 

is not possible to replace sensor node batteries so it is essential 

design issue in wireless sensor networks. Most sensor network 
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applications aim at monitoring or detection of phenomena 

likes office building environment control, wildlife habitat 

monitoring, and forest fire detection. 

 The main problem is that a network of wireless 

sensors are low-powered, it is essential to capture as many 

environmental events as possible while still preserving the 

battery life of the sensor node. 

The main aim or objective is to properly utilize the energy 

in sensors network so as to increase the lifetime of sensors 

network. These protocols aim to be energy-efficient in order to 

elongate the battery lifetime and network lifetime as a result.  

In most application scenarios the replacement of failed or 

depleted network nodes is not an option since they are placed 

in hazardous zones, thus it is extremely important that nodes 

consume the minimum amount of energy in order to make as 

long as possible the lifetime of the network, i.e. the time the 

application is still working properly. 

For fulfilling our objective for the problem statement and to 

increase the lifetime of sensors network as compare with the 

base paper selected, we are developing an intelligent sensing 

algorithm based on Markov decision process (Infinite-horizon 

dynamic programming and Bellman's equation) which is a 

type of Reinforcement Learning scheme. The sleeping 

behavior and energy based cluster head selection (or energy 

based routing) will decide through our intelligent sensing 

algorithm. 

 

C. Reinforcement Learning 

Reinforcement learning, a sub-area of machine learning, uses 

a mathematical way to evaluate the success level of actions 

[12, 13]. Its emphasis on individual learning from the direct 

interactions with the environment makes it perfectly suited to 

distributed cognitive radio scenarios. Reinforcement learning 

has been considered as the most suitable learning approach for 

cognitive radio systems in this work. There are mainly two 

reasons: 

 Reinforcement learning is an individual learning 

approach where the learning agent learns only on 

local observations. This is perfectly suited to 

cognitive radios who also work on a fully distributed 

fashion. 

 Reinforcement learning learns on a trial-and-error 

basis that no environment model is required. This is 

also perfectly suited to cognitive radio systems which 

constantly interact with an ‘unknown’ radio 

environment on a trial-and-error basis. 

The original reinforcement learning model [13] where agents 

are interacting with the environment as illustrated in figure 1.2 

consists of: 

 A set of possible states, represented by S 

 A set of actions, A 

 A set of numerical rewards R 

 
Figure 2: Standard Reinforcement Learning Model (directly reproduced from 

[12]). 

 

The learner is called the agent. The outside world 

which it interacts with is called the environment. The 

learning problem can be formulated by defining: 

 The state 𝑠𝑡𝜖𝑆. of the environment as observed by the 

agent, where S is the set of possible states. 

 The action 𝑎𝑡𝜖𝐴(𝑠𝑡) chosen by the agent, where 𝐴(𝑡) 
is the set of actions admissible at time t. 

 The probabilistic reward𝑟𝑡+1𝜖𝑅, whose mean value is   

provided by the reward function 𝑅(𝑠𝑡 , 𝑎𝑡). Roughly speaking, 

the reward function maps the state-action pair to a scalar value 

and it is used to measure the goodness of taking action at in 

state𝑠𝑡. 
 The state transition function 𝑇(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1), which 

provides the probability of making a transition from state 𝑠𝑡 to 

state 𝑠𝑡+1 after performing action𝑎𝑡. Note that 𝑇(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) 
captures the non-determinism of the environment, because 

taking the same action on the same state may result in 

different next states. 

 

II. PROPOSED METHODOLOGY 

 

A. Heterogeneous Consideration 

In this section we describe our model of a wireless mesh 

network with nodes heterogeneous in their initial amount of 

energy. We particularly present the setting, the energy model, 

and how the optimal number of clusters can be computed. Let 

us assume the case where a percentage of the population of 

mesh nodes is equipped with more energy resources than the 

rest of the nodes. Let 𝑚 be the fraction of the total number of 

nodes n, which is equipped with α times more energy than the 

others. We refer to these powerful nodes as advanced nodes, 

and the rest (1 − 𝑚) ×  𝑛 as normal nodes. We assume that all 

nodes are distributed uniformly over the mesh field. 

 

i) Grouping through Clustering Hierarchy 

 

We consider a mesh network that is hierarchically 

clustered. 

The clustering protocol maintains such clustering hierarchy. In 

this protocol, the clusters are re-established in each “round.” 

New cluster heads are elected in each round and as a result the 

IJD
ACR



IJDACR 

 ISSN: 2319-4863 

 
International Journal of Digital Application & Contemporary research 

Website: www.ijdacr.com (Volume 2, Issue 3, October 2013) 

load is well distributed and balanced among the nodes of the 

network. Moreover each node transmits to the closest cluster 

head so as to split the communication cost to the sink (which is 

tens of times greater than the processing and operation cost.) 

Only the cluster head has to report to the sink and may expend 

a large amount of energy, but this happens periodically for 

each node. In clustering protocol there is an optimal percentage 

popt(determined a priori) of nodes that has to become cluster 

heads in each round assuming uniform distribution of nodes in 

space. 

If the nodes are homogeneous, which means that all the 

nodes in the field have the same initial energy, the clustering 

protocol guarantees that every one of them will become a 

cluster head exactly once every 1/ popt rounds. Throughout this 

paper we refer to this number of rounds, 1/ popt, as epoch of the 

clustered mesh network. 

Initially each node can become a cluster head with a 

probability popt. On average, n × popt nodes must become cluster 

heads per round per epoch. Nodes that are elected to be cluster 

heads in the current round can no longer become cluster heads 

in the same epoch. The non-elected nodes belong to the set G 

and in order to maintain a steady number of cluster heads per 

round, the probability of nodes ЄG to become a cluster head 

increases after each round in the same epoch. The decision is 

made at the beginning of each round by each node s Є G 

independently choosing a random number in [0, 1]. If the 

random number is less than a threshold T(s) then the node 

becomes a cluster head in the current round. The threshold is 

set as: Where, r is the current round number (starting from 

round 0.) The election probability of nodes Є G to become 

cluster heads increases in each round in the same epoch and 

becomes equal to 1 in the last round of the epoch. Note that by 

round we define a time interval where all cluster members have 

to transmit to their cluster head once. We show in this paper 

how the election process of cluster heads should be adapted 

appropriately to deal with heterogeneous nodes, which means 

that not all the nodes in the field have the same initial energy. 

ii) Optimal Clustering 

Previous work have studied either by simulation or 

analytically the optimal probability of a node being elected as 

a cluster head as a function of spatial density when nodes are 

uniformly distributed over the mesh field. This clustering is 

optimal in the sense that energy consumption is well 

distributed over all mesh and the total energy consumption is 

minimum. Such optimal clustering highly depends on the 

energy model we use. This optimum clustering and cluster 

head selection in wireless mesh network can be calculate 

through intelligent sensing scheme. For the purpose of this 

study we use similar energy model and analysis as proposed 

in. According to the radio energy dissipation model illustrated 

in Figure. in order to achieve an acceptable Signal-to-Noise 

Ratio (SNR) in transmitting an L-bit message over a distance 

d, the energy expended by the radio is given by: 

 
 

Figure 3: Radio Energy Dissipation Model 

 

𝐸𝑇2(𝑙, 𝑑) = {
𝐿. 𝐸𝑒𝑙𝑒𝑐 + 𝐿. ∈𝑓𝑠. 𝑑

2  𝑖𝑓 𝑑 ≤ 𝑑0

𝐿. 𝐸𝑒𝑙𝑒𝑐 + 𝐿. ∈𝑚𝑝 . 𝑑
4  𝑖𝑓 𝑑 > 𝑑0

} 

(1) 

 

Here 𝐸𝑒𝑙𝑒𝑐  is the energy dissipated per bit to run the transmitter 

or the receiver circuit, ∈𝑓𝑠 and ∈𝑚𝑝 depend on the transmitter 

amplifier model we use, and d is the distance between the 

sender and receiver. By equating the two expressions at d = d0, 

we have 𝑑0 = √∈𝑓𝑠/∈𝑚𝑝. To receive an L-bit message the 

radio expends𝐸𝑅𝑥 = 𝐿. 𝐸𝑒𝑙𝑒𝑐 . 
 

B. Q-Learning Model 

Q-learning is a model-free reinforcement learning technique, 

based on agents taking actions and receiving scalar rewards 

from the environment in response to those actions. It assigns 

Q-values to each possible action, representing the approximate 

goodness of the action. In the learning process, the agent 

selects and executes one action, then receives the reward, 

which it uses to update the Q-value. Over time the agent learns 

the real action values (costs), which it uses to select the most 

appropriate route. Q-learning has been widely applied in 

robotics, wireless ad hoc communications, etc. Its main 

challenge is to properly model the agent and define the Q-

values.  

 In our cluster head routing scenario, each sensor node 

is an independent learning agent, and actions are routing 

options using different neighbours as the next hop toward the 

cluster head. The cluster head is defined as the cluster node 

with the best (lowest) routing cost to all sinks. The following 

provides detail for our Q-learning solution.  

i) Q-values 

Q-values represent the goodness of actions and the goal of the 

agent is to learn the actual goodness of the available actions. In 

our case, Q-values represent an estimate of the cost to route 

through a neighbour, a value composed of two parts. The first 

part is the broadcast hop count to reach all sinks from the agent 
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and the second is the minimum battery level among the nodes 

on the route to the sinks through this neighbour. The first part 

accounts for energy efficiency by minimizing communication 

overhead. The second, the minimum battery of the nodes, 

allows very low powered nodes to be avoided. The two 

elements of the cost function are united with a hop count 

multiplier (hcm) value, which grows exponentially for 

decreasing battery levels. This means that when the batteries of 

the nodes are full, the routing cost of a neighbour is exactly the 

number of hops to reach the sinks; while with decreasing 

batteries this cost exponentially grows, giving preference to 

higher powered nodes on possibly longer routes 

 To initialize these values, we could use random values, 

as is common in many learning approaches. However, we use a 

more sophisticated approach that calculates an estimate based 

on the hop counts to individual sinks available in a standard 

routing table, thus speeding up the learning process. The initial 

Q-value for an action 𝑎𝑛𝑖 = (𝑛𝑖, 𝐷) is:  

𝑄(𝑎𝑛𝑖)  =  𝑄ℎ𝑜𝑝𝑠(𝑎𝑛𝑖) ∗ 𝑄𝑏𝑎𝑡𝑡𝑒𝑟𝑦(𝑎𝑛𝑖)

=  ∑ ℎ𝑜𝑝𝑠
𝑑𝜖𝐷

𝑑𝑛𝑖 ∗  ℎ𝑐𝑚(𝑏𝑎𝑡𝑛𝑖) 

       (2) 

Where ℎ𝑜𝑝𝑠𝑑𝑛𝑖 is the number of hops neighbour 𝑛𝑖 needs to 

reach sink 𝑑. The initial value of the battery element is set to 

the battery status of neighbour 𝑛𝑖. Note that the hop-count 

estimation is an upper bound of the real costs, because 

subsequent hops are expected to be able to share routes to 

multiple sinks, decreasing the number of transmissions needed 

to reach the sinks. On the other hand, the battery element is 

expected to decrease, because battery levels decrease. Thus, the 

Q-values are expected first to drop, reflecting the learning of 

the real hop costs to reach the sinks, and then to slowly and 

constantly increase because of depleting energy on the nodes. 

 Updating a Q-value. To learn the real values of the 

actions, the agent uses the reward values from the environment. 

In our case, each neighbour to which a data packet is forwarded 

sends the reward, its best Q-value, piggybacked on its next data 

packet. The new Q-value of the action is: 

(𝑎𝑛𝑖) = 𝑄𝑜𝑙𝑑(𝑎𝑛𝑖) + 𝛼(𝑅(𝑎𝑛𝑖) − 𝑄𝑜𝑙𝑑(𝑎𝑛𝑖)) 

(3) 

Where R(ani) is the reward value and α is the learning rate of 

the algorithm. We use α = 1 to speed up learning and because 

we initialize the Q-values with non-random values. Therefore, 

with α= 1, the formula becomes Qnew(ani) = R(ani), directly 

updating the Q-value with the reward. Reward function. 

Intuitively the reward function is the downstream node’s 

opportunity to inform the upstream neighbours of its actual 

cost for the requested action. 

Thus, when calculating the reward, the node selects its 

lowest Q-value among all its actions and adds the real action 

cost: 

𝑅(𝑛𝑠𝑒𝑙𝑓) = 𝑐𝑛𝑖 +𝑚𝑖𝑛⏟
𝑛𝑖∈𝑁

𝑄(𝑎𝑛𝑖) 

(4) 

Where 𝑐𝑛𝑖is the cost of reaching node 𝑛𝑖 and is always 1 (hop) 

in our model. This propagation of Q-values upstream is 

piggybacked on usual DATA packets and allows all nodes to 

eventually learn the actual costs. 

 Exploration strategy (action selection policy). One final, 

important learning parameter is the action selection policy. A 

trivial solution is to greedily select the action with the best 

(lowest) Q-value. However, this policy ignores some actions 

that may, after learning, have lower Q-values, resulting in a 

locally optimal solution. Therefore, a trade off is required 

between exploitation of good routes and exploration among 

available routes. This problem has been extensively studied in 

machine learning. Here we chose the standard greedy strategy, 

which selects a random route with probability and the best 

route otherwise. Previous work showed that a dynamic cost 

function whose value changes continuously over time, such the 

one here based on battery level, results in implicit exploration 

of the routes. This is because the changing route costs force the 

protocol to switch to other, less costly routes, thus also learning 

their real costs. 

C. Markov Decision Process 

This scheme is not new in intelligent world; to use this 

technique in WMN is innovative and challenging task. It helps 

to obtain decisions from set of actions. Also Markov process 

says, the effects of an action taken in a state never depends on 

past state because it always depending on the present state. 

This model has a set of feasible states S, many probable 

actions A, an actual valued reward function R(s, a). Markov 

Model can take two type of action: 

 Deterministic Actions- T: State (S) × Action (A) → 

State(S), for all states and actions we identify a novel 

state. 

 Probabilistic Actions -  T: State(S) × Action(A) → 

Prob( S),  for all new states and actions we denote a 

probability distribution for next states , symbolized by 

the distribution P(s’ | s, a). 

Markov decision processes (MDP) provide a broad 

framework for modelling sequential decision making 
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under uncertainty. MDP's have two sorts of variables: 

state variables stand control variables dt, both of 

which are indexed by time t = 0, 1, 2, 3.... , T, where 

the horizon T may be infinity. A decision-maker or 

agent can be represented by a set of primitives (u, p, 

β) where u(st, dt) is a utility function representing the 

agent's preferences at time t, p(st+ 1 l st, dt) is a 

Markov transition probability representing the agent's 

subjective beliefs about uncertain future states, and 

fit(0, 1) is the rate at which the agent discounts utility 

in future periods. 

Infinite-horizon dynamic programming and 

Bellman's equation: 

From the solution specified in section below, we will 

calculate sleeping behavior and selection probability 

of cluster head. Further simplifications are possible in 

the case of stationary MDP's. In this case the 

transition probabilities and utility functions are the 

same for all t, and the discount functions βt (st, dt) are 

set equal to some constant 𝛽 𝜀 [0, 1]. In the finite- 

horizon case the time homogeneity of u and p does 

not lead to any significant simplifications since there 

still is a fundamental non-stationarity induced by the 

fact that remaining utility ∑ β𝐽u(s𝑗 , d𝑗) 
𝑇
𝑗=𝑡 depends 

on t. However in the infinite-horizon case, the 

stationary Markovian structure of the problem 

implies that the future looks the same whether the 

agent is in state st at time t or in state St+k at time t + k 

provided that st = st +k. 

In other words, the only variable which affects the 

agent's view about the future is the value of his 

current states. This suggests that the optimal decision 

rule and corresponding value function should be time 

invariant, i.e. for all t ≥0 and all s ε S, 𝛿𝑡
∞ = 𝛿(𝑠) 

and𝑉𝑡
∞ = 𝑉(𝑠), satisfies 

𝛿(𝑠) = 𝑎𝑟𝑔𝑚𝑎𝑥⏟    
𝑑∈𝐷(𝑠)

[𝑢(𝑠, 𝑑) + 𝛽∫𝑉(𝑠′)𝑝(𝑑𝑠′|𝑠, 𝑑)] 

(5) 

 

Where, V is defined recursively as the solution to 

Bellman's equation, It is easy to see that if a solution 

to Bellman's equation exists, then it must be unique. 

Suppose that W(s) is another solution to above 

equation. Then we have 

𝑉(𝑠) = 𝑚𝑎𝑥⏟
𝑑∈𝐷(𝑠)

[𝑢(𝑠, 𝑑) + 𝛽∫𝑉(𝑠′)𝑝(𝑑𝑠′|𝑠, 𝑑)] 

|𝑉(𝑠) −𝑊(𝑠)| ≤ 𝛽∫ 𝑚𝑎𝑥⏟
𝑑∈𝐷(𝑠)

|𝑉(𝑠′)

−𝑊(𝑠′)|𝑝(𝑑𝑠′|𝑠, 𝑑) 

≤ 𝛽 𝑠𝑢𝑝⏟
𝑠𝜖𝑆

|𝑉(𝑠) − 𝑊(𝑠)| 

(6) 

 

Since 0 < β< 1, the only solution to above equation 

is𝑠𝑢𝑝⏟
𝑠𝜖𝑆

|𝑉(𝑠) −𝑊(𝑠)| = 0. 

 

D. Procedure of Proposed Model  

1. Method is applied in a Mesh Field of Area 100×100 

m. 

2. The base Station is Placed at the Centre of Mesh 

Field INITIALLY; however we can change the 

Position of base Station. 

3. Number of Nodes in the field is 100. 

4. Advanced Node Have α time more energy than a 

normal node. 

5. Hence Energy of Advanced Node becomes = initial 

Energy× (α).  Total = initial Energy× (1+α). 

6. Initially the dissipated energy is Zero & residual 

energy is the Amount of initial energy in a Node, 

Hence Total energy 𝐸𝑡 also the Amount of residual 

energy because it is the sum of dissipated & residual 

energy. 

7. Average distance between the cluster-head and the 

base station is calculated by 𝐷𝑏𝑠= (0.765×one 

dimension of field)/2              

8. Optimum Number Of Clusters are calculated by: 

 𝐾𝑜𝑝𝑡 =Calculate through our intelligence sensing 

algorithm. 

9. The average distance between the cluster members 

and the cluster-head is calculated by 

 

𝐷𝑐ℎ =
ONE DIMENSION OF FIELD

√2 × 𝜋 × 𝐾𝑜𝑝𝑡
 

(7) 

 

10. The total energy dissipated in the network during a 

round is calculated by: 

𝐸𝑡 = 𝑏𝑖𝑡𝑠 𝑑𝑎𝑡𝑎 × (2 × 𝑛 × 𝐸𝑡𝑥 + 𝑛 × 𝐸𝑑𝑎 + 𝐾𝑜𝑝𝑡 ×
𝐸𝑚𝑝 × 𝐷𝑏𝑠

4 + 4 × 𝑛 × 𝐸𝑓𝑠 × 𝐷𝑐ℎ
2)= 

(8) 

11. Also we calculated the average energy 𝐸𝑎of a Node 

after the particular round with the Knowledge of 

Total Energy and a particular number of round 

numbers. 

𝐸𝑎 = 𝐸𝑡 × (
1 − (𝑟/𝑅𝑚𝑎𝑥)

𝑛
) 

(9) 
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12. We calculated the Dead Statistics before assigning a 

Cluster Head, and its value renewed every new 

round. 

13. The New Expression for Optimum Probability can be 

calculated from Different Energy Levels and 

Optimum Probability Defined Earlier. 

𝑝(𝑖) =It is the Energy Dependent value (Initial 

energy, average energy, total energy, residual energy) 

calculated from our Markov decision process. 

14. The value of optimum probability will use by our 

reinforcement learning scheme to decide an optimum 

selection mechanism for routing.  

15. Here, an Advanced will becomes Cluster Head, if a 

Temporary number assigned to it is Less than the 

Probability Structure Below, 

𝑇(𝑠𝑖) = {

𝑃𝑖

1 − 𝑃𝑖 (𝑟𝑚𝑜𝑑
1
𝑃𝑖
)
     𝑖𝑓 ∈ 𝐺

0                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

(10) 

Here, Pi is come out from New Expression for 

Optimum Probability 𝑃𝑖  
16. After an Advanced becomes Cluster Head, Energy 

Models are applied to calculate the Amount of 

Energy Spent by it on that Particular Round and 

complete the round of steady state phase. 

𝐸𝑇𝑋(𝑙, 𝑑) = {
𝑙𝐸𝑑𝑒𝑐 + 𝑙𝜀𝑓𝑥𝑑

2, 𝑑 < 𝑑0

𝑙𝐸𝑑𝑒𝑐 + 𝑙𝜀𝑓𝑥𝑑
4, 𝑑 ≥ 𝑑0

 

(11) 

17. If a Node will Not an Advanced node and Discarded 

from the criteria above, than it goes to a Set of 

Normal node, and follow the behavior of normal 

node and complete the round of steady state phase. 

 

III. RESULTS AND DISCUSSION 

 
Figure 4: Throughput of Nodes with respect to Number of rounds in our 

protocol for 50 Nodes. 

 
Figure 5: End to End Delay in packet Delivery with respect to Number of 

rounds for 50 nodes 

 

Figure 6: Lifetime of Mesh Devices in our protocol for Number of rounds 
(when considering 50 nodes in the network) 

 

IV CONCLUSION 

 

This work proposes an amend implementation on previously 

developed work which is further compare with the existing 

scenario. This protocol is used to determine the optimal 

probability for cluster formation in WSNs and sleeping 

behavior of sensor nodes through Markov Decision Scheme. 

Since the use of the optimal probability yields optimal energy-

efficient clustering. Simulation results shows in terms of 

network lifetime, retained energy, data packets transmission, 

average information gathered, sleep strategy etc. 

 Our protocol successfully extends the stable region by 

being aware of heterogeneity through assigning probabilities of 

cluster-head election weighted by the relative initial energy of 

nodes. Proposed algorithm is implemented using MATLAB. 

Real-time learning algorithm is developed to extend the 

lifetime of a sensor node to sense and transmit environmental 

events. The purpose of our new learning algorithm is to couple 
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the sensor’s sleeping behavior to the natural statistics of the 

environment therefore it can be in optimal synchronization 

with changes in the environment by sleeping with steady 

environment and staying awake when turbulent environment. 
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