
IJDACR 

 ISSN: 2319-4863 

 
International Journal of Digital Application & Contemporary research 

Website: www.ijdacr.com (Volume 2, Issue 10, May 2014) 

Software Fault Estimation using Fuzzy C-Means and 

Neuro-Fuzzy Classification 

Jyoti Nagpal 

M. Tech. Scholar, Computer Science Dept.  

Poornima college of Engineering, Jaipur 

(Rajasthan.), India 

 jyotibhugra2010@gmail.com  

 

Dr. Ajay Khuteta 

Assosiate professor, Computer Science Dept.  

Poornima college of Engineering, Jaipur 

(Rajasthan.), India 

 khutetaajay@poornima.org  

 
Abstract –The fault-proneness of a software module is 

the probability that the module contains faults and a 

software fault is a defect that causes software failures 

in an executable project. Early detection of fault 

prone software components enables verification 

experts to concentrate their time and resources on the 

problem areas of the software systems under 

development. In this paper, the performance 

comparison of a Software Fault Prediction System is 

done using two techniques; the first technique is 

Fuzzy C-Means clustering and another one is hybrid 

method which is combination of Fuzzy c-means 

clustering and Neural Networks approach (Neuro-

Fuzzy). Both of the methods have been performed 

with the real time data set named PC1, taken from 

NASA MDP software projects. The performance is 

recorded on the basis of accuracy, net reliability, and 

RMSE and MAE values. 

Keywords – Fault-Proneness, Fuzzy C-Means, Neural 

Networks, Neuro-Fuzzy, NASA MDP. 

I. INTRODUCTION 
Faults are major problem in software systems that 

need to be resolved. Fault is a flaw that results in 

failure. We should have  to  know  the  clear  

difference  between  bug,  fault  and  failure.  

Failure is deviation of software actions from the 

expected outcomes. A fault in software is a flaw 

that results in failure. Bug occurs when specified 

requirements of the software do not conform. There 

are many number of software having number of 

faults are delivered to the market [1]. 

A fault is a defect, an error in source code that 

causes failures when executed. A fault prone 

software module is the one containing more 

number of expected faults. Accurate prediction of 

fault prone modules enables the verification and 

validation activities focused on the critical software 

components.  

A software fault is a defect that causes software 

failure in an executable product. For each execution 

of the software program where the output is 

incorrect, we observe a failure. Software engineers 

distinguish software faults from software failures. 

Faults in software systems continue to be a major 

problem. Various systems are delivered to users 

with excessive faults. This is despite a huge amount 

of development effort going into fault reduction in 

terms of quality control and testing. It has long 

been recognized that seeking out fault-prone parts 

of the system and targeting those parts for 

increased quality control and testing is an effective 

approach to fault reduction. An inadequate amount 

of valuable work in this area has been carried out 

previously. Regardless of this it is difficult to 

identify a reliable approach to identifying fault-

prone software components. Using software 

complexity measures, the techniques build models, 

which categorize components as likely to contain 

faults or not. 

Till now there are proposed numerous methods for 

data clustering methods. The algorithms provide a 

satisfying measure for the classification and mining 

of data. The software fault prediction is also now 

using the data clustering techniques because of the 

features and the functions they are expected to 

deliver. The clustering techniques till now have 

solved many purposes yet the satisfying result 

could not be guaranteed. In this research work, we 

have tried to modify the previous algorithms for the 

better results. We do not say that it is the end of 

research in this segment but it will definitely 

provide the new researchers with the scope to bring 

new considerations that could serve the future 

demands. 

The main objective of this paper is to design a 

Software Fault Prediction System using Fuzzy c-

means clustering approach and a hybrid technique 

(combination of Fuzzy c-means clustering and 

Neural Networks approach). The results after 

classification of software fault data come in terms 

of certain efficiency parameters like Accuracy, Net 

Reliability, Mean Absolute Error, and Root Mean 

Squared Error in order to compare both 

approaches. 

IJD
ACR

mailto:%20jyotibhugra2010@gmail.com
mailto:%20khutetaajay@poornima.org


IJDACR 

 ISSN: 2319-4863 

 
International Journal of Digital Application & Contemporary research 

Website: www.ijdacr.com (Volume 2, Issue 10, May 2014) 

II. SOFTWARE FAULT PREDICTION 

A software system is the composition of number of 

modules dependent on each other. Any module 

with faults in its functionality adverse the output 

and lowers its reliability. In this scenario, the 

detection of faulty modules in early stage 

(development stage) is mandatory to minimize 

faults in operation phase. Hence, the systems are 

classified in two categories i.e. with faulty/non-

faulty modules in their testing phase. This 

classification diverts the focus to neutralize faulty 

sections to achieve high reliability and accuracy. 

A software fault or error is reason of failure in 

execution stage. The error message at each stage of 

executing the program indicates the fault in 

programming. Generally speaking the errors are the 

logical errors in programming of software. Out of 

the heavy researches explored in this section a 

limited amount of valuable work is illustrated in 

literature section. The prediction models of 

software fault proneness technique estimate the 

amount of faulty modules in a program. The 

software metrics are the attributes for process, 

execution and product of the software system. 

Various other attributes like defect density, 

normalized work, fault proneness, maintain ability, 

reusability etc. determines the quality of software. 

Differennt fault prediction techniques are stated 

below: 

Decision Tree: Decision trees are great and 

standard tools for classification and prediction. It 

produces classifiers in a form of structure of tree 

where each leaf node represents decision node. In 

this technique, classification starts from root of the 

tree and continues to move down until leaf node is 

reached.  Classification helps in classifying faulty 

and non-faulty modules. Prediction helps in 

predicting faulty and non-faulty modules.  Decision 

tress helps in developing fault prediction models 

that predicts faults. 

Neural Network: Neural Network helps in 

recognizing patterns from the data set.  An artificial 

neural network is composed of many artificial 

neurons that are interconnected together according 

to specific network architecture. The goal of  the  

neural  network  is  to  transform  the  inputs  into  

meaningful  outputs.  Adaptive  Resonance  Neural  

Network  is generally  used  for  defect  prediction  

in  software  systems. It helps in identifying faulty 

modules very excellently. The benefit of using this 

technique is that it assists in decreasing effort and 

cost of developing software. 

Clustering approach:  Density Based Clustering is 

a clustering algorithm. It can be used to estimate 

the number of faulty and non-fault modules in 

software system. Clusters are defined as areas of 

higher density. 

Bagging method: It creates base learners on many 

data subsets that are uniformly sampled from the 

original data, and then uses a linear combination to 

aggregate them. It is also referred as Bootstrap 

Aggregating. Combination technique can be 

majority voting.  It  also  helps  in  identifying  

faulty  and  non-faulty  modules  with  data  sets  

that  suffers  from imbalance problem. This method 

can increase the performance of the defect data 

predictions. 

Naïve  Bayes:  It  is  a  classifier  based  on  Bayes  

theorem  used  in  software  fault  prediction.  It 

resolves the several difficulties like spam 

classification (to predict whether email is spam or 

not), medical diagnosis (given list of symptoms, 

predict whether patient has cancer or not) and so 

on. This method can be used to predict faulty and 

non-faulty modules. 

III. METHODOLOGY 

1. Find the structural code and requirement 

attributes 

The first step is to find the structural code and 

requirement attributes of software systems i.e. 

software metrics. The real time defect data sets are 

taken from the NASA’s MDP (Metric Data 

Program) data repository, [online] Available: 

http://mdp.ivv.nasa.gov.innamed as PC1 dataset 

which is collected from a flight software from an 

earth orbiting satellite coded in C programming 

language, containing 1107 modules and only 109 

have their requirements specified. PC1 has 320 

requirements available and all of them are 

associated with program modules. All these data 

sets varied in the percentage of defect modules, 

with the PC1 dataset containing the least number of 

defect modules. 

2. Select the suitable metric values as 

representation of statement 

The Suitable metric values used are fault and 

without fault attributes, we set these values in 

database create in MATLAB R2010 A as 0 and 1. 

Means 0 for data with fault and 1 for data without 

fault. The metrics in these datasets (NASA MDP 

dataset) describe projects which vary in size and 

complexity, programming languages, development 

processes, etc. When reporting a fault prediction 

modelling experiment, it is important to describe 

IJD
ACR

http://mdp.ivv.nasa.gov.in/


IJDACR 

 ISSN: 2319-4863 

 
International Journal of Digital Application & Contemporary research 

Website: www.ijdacr.com (Volume 2, Issue 10, May 2014) 

the characteristics of the datasets. Each data set 

contains twenty-one software metrics, which 

describe product’s size, complexity and some 

structural properties. We use only fault and without 

attributes to classify the selected NASA MDP PC1 

dataset. Also the product metrics and product 

module metrics available in dataset which can also 

be use are the product requirement metrics are as 

follows:  

 Module  

 Action  

 Conditional  

 Continuance  

 Imperative  

 Option  

 Risk_Level  

 Source  

 Weak_Phrase  

The product module metrics are as follows:  

1. Module  

2. Loc_Blank  

3. Branch_Count  

4. Call_Pairs  

5. LOC_Code_and_Comment  

6. LOC_Comments  

7. Condition_Count  

8. Cyclomatic_complexity  

9. Cyclomatic_Density  

10. Decision_Count  

11. Edge_Count  

12. Essential_Complexity  

13. Essential_Density  

14. LOC_Executable  

15. Parameter_Count  

16. Global_Data_Complexity  

17. Global_Data_Density  

18. Halstead_Content  

19. Halstead_Difficulty  

20. Halstead_Effort  

21. Halstead_Error_EST  

22. Halstead_Length  

23. Halstead_Prog_Time  

24. Halstead_Volume  

25. Normalized_Cyclomatic_Complexity  

26. Num_Operands  

27. Num_Operators  

28. Num_Unique_Operands  

29. Num_Unique_Operators  

30. Number_Of_Lines  

31. Pathological_Complexity  

32. LOC_Total 

Figure 1 and 2 show flow diagrams for Fuzzy c-

means clustering approach and hybrid (Neuro-

Fuzzy) approach respectively. 

 

Figure 1: Flow diagram for Fuzzy C-means clustering Approach 

 
Figure 2: Flow diagram for hybrid (Neuro-Fuzzy) technique 

In this paper we have developed a software fault 

prediction module using two methods:  

 Fuzzy c-means clustering (FCM) 

approach. 

Fault Data 

(PC1 data set) 
Visit Database Site 

Feed-Forward Neural 

Network 

Result in terms of: 

 Accuracy 

 Mean Absolute Error 

 Net Reliability 

 Root Mean Squared Error 

Initially data is passed to 

Fuzzy C-Means clustering 

block in order to classify 

data according to 

attributes (true / false 

attributes) 

Fuzzy C-Means Clustering 

The classified data from 

Fuzzy C-Means clustering 

block is given to Neural 

Network block to train 

neural network for these 

attributes in order to 

classify any fault in the 

system 

Fault Data 

(PC1 data set) 
Visit Database Site 

Fuzzy C-Means Clustering 

Result in terms of: 

 Accuracy 

 Mean Absolute Error 

 Net Reliability 

 Root Mean Squared Error 

It classifies the 

given data if 

there is any fault 

present in it. 

IJD
ACR

http://nasa-softwaredefectdatasets.wikispaces.com/home
http://nasa-softwaredefectdatasets.wikispaces.com/home


IJDACR 

 ISSN: 2319-4863 

 
International Journal of Digital Application & Contemporary research 

Website: www.ijdacr.com (Volume 2, Issue 10, May 2014) 

 Hybrid technique or Neuro-Fuzzy (Fuzzy 

c-means clustering (FCM) +Neural 

Network) technique. 

PC1 software fault database is used available at 

NASA’s research website. In the first method 

Fuzzy c-means clustering approach is used to 

detect any fault present in the data. In the hybrid 

method, Fuzzy c-means clustering approach is used 

to classify data according to attributes. The 

classified data from Fuzzy C-Means clustering is 

trained by neural network in order to predict any 

fault in the system. 

Fuzzy C-Means Clustering 

Fuzzy C-Means iteratively moves the cluster 

centers to the “right” location within a data set. 

Objective function based fuzzy clustering 

algorithms such as the fuzzy c-means (FCM) 

algorithm has been used extensively for different 

tasks such as pattern recognition, data mining, and 

image processing and fuzzy modeling. 

In general, cluster analysis refers to a broad 

spectrum of methods which try to subdivide a data 

set X into c subsets (clusters) which are pairwise 

disjoint, all nonempty, and reproduce X through 

union. The clusters then are termed a hard (i.e., 

non-fuzzy) c-partition of X. 

Parameters of the FCM Algorithm 

Number of Clusters: The number of clusters c is the 

most important parameter, in the sense that the 

remaining parameters have less influence on the 

resulting partition. When clustering real data 

without any a priori information about the 

structures in the data, one usually has to make 

assumptions about the number of underlying 

clusters. The chosen clustering algorithm then 

searches for c clusters, regardless of whether they 

are really present in the data or not. Two main 

approaches to determining the appropriate number 

of clusters in data can be distinguished: 

A. Validity measures: Validity measures are 

scalar indices that assess the goodness of 

the obtained partition. Clustering 

algorithms generally aim at locating 

wellseparated and compact clusters. When 

the number of clusters is chosen equal to 

the number of groups that actually exist in 

the data, it can be expected that the 

clustering algorithm will identify them 

correctly. When this is not the case, 

misclassifications appear, and the clusters 

are not likely to be well separated and 

compact. Hence, most cluster validity 

measures are designed to quantify the 

separation and the compactness of the 

clusters. 

B. Iterative merging or insertion of clusters: 

The basic idea of cluster merging is to 

start with a sufficiently large number of 

clusters, and successively reduce this 

number by merging clusters. 

Fuzziness Parameter: The weighting exponent 𝑚 is 

a rather important parameter as well, because it 

significantly influences the fuzziness of the 

resulting partition. 

Termination Criterion: The FCM algorithm stops 

iterating when the norm of the difference between 

U in two successive iterations is smaller than the 

termination parameter 𝜖. For the maximum 

norm 𝑚𝑎𝑥𝑖𝑘(|𝜇𝑖𝑘
(𝑙)

− 𝜇𝑖𝑘
(𝑙−1)

|). The usual choice is 

𝜖 = 0.001, even though 𝜖 = 0.01 works well in 

most cases, while drastically reducing the 

computing times. 

Norm-Inducing Matrix: The shape of the clusters is 

determined by the choice of the matrix 𝐴  in the 

distance measure. A common choice is 𝐴 =  𝐼, 

which gives the standard Euclidean norm: 

𝐷𝑖𝑘
2 = (𝑧𝑘 − 𝑣𝑖)

𝑇(𝑧𝑘 − 𝑣𝑖)              (2)             

Where 𝑣𝑖  are ordinary means of the clusters. 

Let {x1, x2, . . , x𝑁} be a set of N data objects 

represented by n-dimensional feature vectors.  

x𝑘 = [𝑥1𝑘 , … … , 𝑥𝑛𝑘]𝑇 ∈ 𝑅𝑛 (3) 

A set of N feature vectors is then denoted as a data 

matrix of 𝑛 × 𝑁. 

𝑋 = [

𝑥11

⋮
𝑥𝑛1

𝑥12

⋮
𝑥𝑛2

…
⋮
…

𝑥1𝑁

⋮
𝑥𝑛𝑁

] (4) 

A fuzzy clustering algorithm partitions the 

data X into M fuzzy clusters, forming a fuzzy 

partitioning. A fuzzy partition can be conveniently 

represented as a matrix, 𝑈, whose elements 𝑢𝑖𝑘 ∈
[0;  1] represents the membership degree of 𝑥𝑘 in 

cluster ′𝑖′. Hence, the 𝑖𝑡ℎ row of 𝑈 contains values 

of the 𝑖𝑡ℎ membership function in the fuzzy 

partition. Objective function based fuzzy clustering 

algorithms minimize an objective function of the 

type 

𝐽(𝑋; 𝑈, 𝑉) = ∑ ∑ (𝑢𝑖𝑘)𝑚𝑑2(x𝑘, v𝑖)
𝑁
𝑘=1

𝑀
𝑖=1   (5) 

Where,  

𝑉 = [v1, … , v𝑀]𝑇 ∈ ℝ𝑛        (6) 

IJD
ACR



IJDACR 

 ISSN: 2319-4863 

 
International Journal of Digital Application & Contemporary research 

Website: www.ijdacr.com (Volume 2, Issue 10, May 2014) 

is an M-tuple of cluster prototypes which have to 

be determined, and 𝑚 ∈ (1;  ∞) is a weighting 

exponent which determines the fuzziness of the 

clusters in order to avoid the trivial solution, 

constraints must be forced on U. 

∑ 𝑢𝑖𝑘 = 1, ∀𝑘𝑀
𝑖=1          (7) 

0 < ∑ 𝑢𝑖𝑘 < 𝑁, ∀𝑖𝑁
𝑖=1   (8) 

These constraints imply that the sum of each 

column of U is 1. Further, there may be no empty 

clusters, but the distribution of membership among 

the M fuzzy subsets is not constrained. The 

prototypes are typically selected to be idealized 

geometric forms such as linear varieties (e.g. FCV 

algorithm) or points (e.g. GK or FCM algorithms). 

When point prototypes are used, the general form 

of the distance measure is given by 

𝑑2(x𝑘, v𝑖) = (x𝑘 − v𝑖)
𝑇𝐴𝑖(x𝑘 − v𝑖)       (9) 

Where the norm matrix 𝐴𝑖 is a positive definite 

symmetric matrix. The FCM algorithm uses the 

Euclidian distance measure, i.e. 𝐴𝑖 = 𝐼∀𝑖, while the 

GK algorithm uses the Mahalonibisdistance, i.e. 

𝐴𝑖 = 𝑃𝑖
−1 with 𝑃𝑖  the covariance matrix of cluster i, 

and the additional volume constraint|𝐴𝑖| = 𝜌𝑖. 

The FCM algorithms are best described by 

recasting conditions in matrix-theoretic terms [3]. 

Towards this end, let U be a real 𝑐 ×  𝑁 matrix, 

𝑈 = [𝑢𝑖𝑘]. 𝑈 is the matrix representation of the 

partition { 𝑌𝑖} in the situation 

𝑢𝑖(y𝑘) = 𝑢𝑖𝑘 = {
1;       y𝑘 ∈ 𝑌𝑖

0;      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
}     (10) 

 ∑ 𝑢𝑖𝑘 > 0      𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖𝑀
𝑖=1        (11) 

∑ 𝑢𝑖𝑘 = 1       𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘𝑀
𝑖=1   (12) 

In equation (10), 𝑢𝑖 is a function such that: 𝑢𝑖: 𝑌 →
 {0, 1}. In conventional models, 𝑢𝑖 is the 

characteristic function of, 𝑌𝑖: in fact, 𝑢𝑖 and 𝑌𝑖 

determine one another, so there is no harm in 

labelling u; the ith hard subset of the partition (It is 

unusual, of course, but is important in terms of 

understanding the term “fuzzy set”). Conditions of 

equations (11) and (12) are equivalent, so U is 

termed a hard c-partition of Y. Generalizing this 

idea, we refer to U as a fuzzy c-partition of Y when 

the elements of U are numbers in the unit interval 

[0, 1] that continue to satisfy both equations (11) 

and (12). The basis for this definition are c 

functions 𝑢𝑖: 𝑌 →  {0, 1} whose values 𝑢𝑖(y𝑘) ∈
[0,1]  are interpreted as the grades of membership 

of the y𝑘s in the “fuzzy subsets” 𝑢𝑖 of Y. 

 

Neural Networks 

Neural Network approach contains following steps: 

 Neural network creation 

 Configuration 

 Training 

 Simulation 

 

Figure 3: An example of a simple feed forward network [4] 

Feed-forward ANNs (figure 3) as the name implies 

allow signals to travel in one way only; from input 

to output layer. There is no feedback loops or 

recurrent loops i.e. the output of any layer will not 

affect that output of the same layer. Feed-forward 

ANNs is also tend to be a straight forward 

networks that is associated with inputs outputs. 

They are highly used in pattern recognition and 

classification. 

The Network layers 

The general type of neural network consists of 

three groups of layers, or three groups of units: first 

one is a layer of “input” units which is always is 

connected to a second layer i.e. layer of “hidden" 

units, which is finally connected to a layer of 

“output” units. Figure 7 shows the representation of 

all layers of neural network.  

The Learning Process 

There are basically two major categories of 

learning methods used for neural networks; 

Supervise learning methods and unsupervised 

learning method. In this research work we perform 

simulation of neural network under supervised 

learning mechanism. Supervised learning which 

work as an external teacher or guide, so that each 

output unit is told to perform what should be 

desired response to the respected input signals. 

Global information may be required during 

learning process. Error convergence is the main 

concern issue of supervise learning, i.e. the 

minimization of error between the desired and 

computed unit values of network. Here the main 

aim is to find a set of weights which minimizes or 

reduce the error up to precise level. 

  

IJD
ACR



IJDACR 

 ISSN: 2319-4863 

 
International Journal of Digital Application & Contemporary research 

Website: www.ijdacr.com (Volume 2, Issue 10, May 2014) 

Transfer Function 

The whole behavior of Neural Network totally 

depends on both the weights and the input-output 

function i.e. transfers function which is specified in 

the all units. There are basically three categories of 

Transfer Functions: 

 Linear (or ramp) 

 Threshold 

 Sigmoid 

For linear units or for the linear transfer function, 

the output activity is directly proportional to the 

total weighted output units. For threshold units or 

for threshold transfer function, the output unit 

outputs are set at one of two levels, which totally 

depending on whether the total input of output unit 

is greater than or less than some predefined 

threshold value. For sigmoid units or for sigmoid 

transfer function, the output varies or changes 

continuously but not linearly as the inputs of input 

unit changes. 

IV. SIMULATION AND RESULTS 

Simulation is carried out using MATLAB 2010a: 

 

Figure 4: Graphical User Interface (GUI) for proposed work 

 

Figure 5: Input PC1 dataset with attributes (fault and without 
fault) 

 

Figure 6: Input PC1 dataset with fault attributes when separating 

fault attributes from input data 

 

 

Figure 7: Input PC1 dataset with without fault attributes when 
separating without fault attributes from input data 

 

 

Figure 8: Data Input (PC1 database without attributes) 

IJD
ACR



IJDACR 

 ISSN: 2319-4863 

 
International Journal of Digital Application & Contemporary research 

Website: www.ijdacr.com (Volume 2, Issue 10, May 2014) 

 

Figure 9: Membership function plot 

 

 

 

Figure 10: Membership function plot after Fuzzy logic 

 

 

 

Figure 11: Membership function plot after Neuro-Fuzzy 

approach 

 

 

Table 1: Performance comparison for Fuzzy c-means and 

proposed (Adaptive-Neuro-Fuzzy) technique  

Evaluation 

Parameter 

Fuzzy C-

Means 

Clustering 

Hybrid (Adaptive 

Neuro-Fuzzy) 

technique 

Accuracy 75 87 

Net Reliability 60.07 47.20 

Mean Absolute 

Error (MAE) 

0.25 0.13 

Root Mean 

Squared Error 

(RMSE) 

0.0833 0.0194 

 

The disadvantage of the methods based on genetic 

algorithms is that the number of fuzzy sets must be 

informed. Genetically optimized fuzzy clustering 

method [9] have high computational complexity 

and large time spending. 

V. CONCLUSION 

In this paper, a software Fault Prediction System is 

implemented using Fuzzy C-Means clustering and 

hybrid (Neuro-Fuzzy) techniques. Performance of 

both the techniques is discussed in the comparative 

analysis in order to predict level of impact of faults 

in NASA’s public domain defect dataset. 

Predicting faults in the software life cycle can be 

used to improve software process control and 

achieve high software reliability. On the basis of 

evaluation parameters, it was found that the hybrid 

technique shows more accuracy and less errors as 

compared to Fuzzy C-Means clustering method. 

REFERENCES 
[1] Jaakkola T., and Haussler D., “Exploiting generative 

models in discriminative classifiers”, In Advances in 

Neural Information Processing Systems 1, MIT 
Press, pp. 487–493, 1998. 

[2] Kazama J., and Tsujii J., “Evaluation and extension 
of maximum entropy models with in equality 

constraints”, Proceedings of 2003 Conference on 

Empirical Methods in Natural Language Processing 
(EMNLP2003), pp. 137–144, 2003. 

[3] Fuzzy C-means (FCM) algorithm, online available 

at: http://hayoungkim.tistory.com/20. 
[4] Christos Stergiou and Dimitrios Siganos, “Neural 

Networks” Report online available at: 

http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol
4/cs11/report.html. 

[5] G. Pai, "Empirical analysis of Software Fault 

Content and Fault Proneness Using Bayesian 

IJD
ACR

http://hayoungkim.tistory.com/20
http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs11/report.html
http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs11/report.html


IJDACR 

 ISSN: 2319-4863 

 
International Journal of Digital Application & Contemporary research 

Website: www.ijdacr.com (Volume 2, Issue 10, May 2014) 

Methods", IEEE Transactions on software 

Engineering, 33(10), pp. 675-686, 2007. 
[6] Arvinder Kaur, Ruchika Malhotra, “Application of 

Random Forest in Predicting Fault-Prone Classes”, 

2008 International Conference on Advanced 
Computer Theory and Engineering ICACTE 2008, 

Pukhet, pp. 37-43, 2008. 

[7] Anil Kumar Singh, Rajkumar Goel and Pankaj 
Kumar, “Comparative Analysis of Accuracy 

Prediction using Fuzzy C-Means and KNN 

Clasiffier”, International Journal of Digital 
Application & Contemporary Research (IJDACR), 

ISSN: 2319-4863, Vol. 2, Issue 7, February 2014. 

[8] Aditi Sanyal, Balraj Singh, “A Systematic Literature 
Survey on Various Techniques for Software Fault 

Prediction”, International Journal of Advanced 

Research in Computer Science and Software 
Engineering (IJARCSSE), ISSN: 2277 128X, Vol. 4, 

Issue 1, January 2014. 

[9] Saurabh Bhattacharya, Dr. Sourabh Rungta and 
Naresh Kar, “Software Fault Prediction using Fuzzy 

Clustering & Genetic Algorithm”, International 

Journal of Digital Application & Contemporary 
Research (IJDACR), ISSN: 2319-4863, Vol. 2, Issue 

5, December 2013. 

[10] Kriti Purswani, Pankaj Dalal, Dr. Avinash Panwar 
and Kushagra Dashora, “Software Fault Prediction 

Using Fuzzy C-Means Clustering and Feed Forward 

Neural Network”, International Journal of Digital 
Application & Contemporary Research (IJDACR), 

ISSN: 2319-4863, Vol. 2, Issue 1, July 2013. 

[11] R. Sathyaraj, S. Prabu, “A survey – Quality based 
Object Oriented Software Fault Prediction”, 

International Journal of Engineering and Technology 

(IJET), Vol. 5 No 3 Jun-Jul 2013.  
[12] Nurudeen Sherif, Nurudeen Mohammed, “Using 

Fuzzy Clustering and Software Metrics to Predict 

Faults in large Industrial Software Systems" IOSR 
Journal of Computer Engineering (IOSR-JCE) e-

ISSN: 2278-0661, ISSN: 2278-8727, Volume 13, 

Issue 6, PP 32-36, Jul. - Aug. 2013. 
[13] Karpagavadivu. K, Maragatham. T, Dr. Karthik. S, 

“A Survey of Different Software Fault 

PredictionUsing Data Mining Techniques Methods”, 
International Journal of Advanced Research in 

Computer Engineering & Technology (IJARCET), 

ISSN: 2278 – 1323, Vol.1, Issue 8, October 2012. 
[14] Atul Bisht, Amanpreet Singh Brar and Parvinder S. 

Sandhu, “Prediction of Faults in Open Source 
Software Systems Using FCM”, International 

Conference on Computer Graphics, Simulation and 

Modeling (ICGSM'2012), Pattaya (Thailand), July 
28-29, 2012. 

[15] Amandeep Kaur, Arjan Singh, Baljit Singh, “Design 

of Hybrid Neural Network Model for Quality 
Evaluation of Object Oriented Software Modules”, 

International Journal of Engineering Research and 

Development (IJERD), ISSN: 2278-067X, Vol. 2, 
Issue 5, July 2012. 

[16] Supreet Kaur, and Dinesh Kumar, “Software Fault 

Prediction in Object Oriented Software Systems 
Using Density Based Clustering Approach". 

International Journal of Research in Engineering and 

Technology (IJRET), ISSN: 2277-4378, Vol. 1, No. 
2, March 2012. 

[17] Cagatay Catal, “Performance Evaluation Metrics for 

Software Fault Prediction Studies”, Istanbul Kultur 
University, Department of Computer Engineering, 

Atakoy Campus, 34156, Istanbul, Turkey 

[18] Parvinder S. Sandhu, Sheena Singh, Neha Budhija, 

"Prediction of Level of Severity of Faults in Software 
Systems using Density Based Clustering" 2011 

International Conference on Software and Computer 

Applications IPCSIT vol.9 IACSIT Press, Singapore, 
2011. 

[19] Giuseppe Scanniello, Carmine Gravino, Andrian 

Marcus, Tim Menzies, “Class Level Fault Prediction 
Using Software Clustering”. Online available at: 

http://www2.unibas.it/gscanniello/Clustering and 

Fault Prediction. 
[20] Neeraj Mohan, Parvinder S. Sandhu, and Hardeep 

Singh, “Impact of Faults in Different Software 

Systems: A Survey" World Academy of Science, 
Engineering and Technology, 2009. 

[21] Thomas J. Ostrand and Elaine J. Weyuker, “A Tool 

for Mining Defect Tracking Systems to Predict 
Fault-Prone Files", 1st international workshop on 

mining software repositories, pp. 85-89, 2005. 

[22] Brian Randell, “Facing Up to Faults”, The Computer 
Journal, Vol. 43, January 2000. 

[23] Supreet Kaur, Dinesh Kumar, “Quality Prediction of 

Object Oriented Software Using Density Based 
Clustering Approach”, IACSIT International Journal 

of Engineering and Technology, Vol.3, No.4, August 

2011. 

IJD
ACR




