
IJDACR

 ISSN: 2319-4863

International Journal of Digital Application & Contemporary research

Website: www.ijdacr.com (Volume 1, Issue 12, July 2013)

FPGA Implementation of Improved S-BOX Architecture

for Advanced Encryption Standard

 Prahlad Kumar Khandekar Sachin Meshram
 prahladkh@gmail.com sachinm288@gmail.com

 M.Tech. Scholar, ET&T Department Asst. Professor, ET&T Department

 Chouksey Engg. College Bilaspur Chouksey Engg. College Bilaspur

Abstract — Advance Encryption Standard (AES) is one

of the most popular cryptographic algorithm now a days

providing integrity, authentication and security. The

Substitution block, used for security better known as S-

BOX is the key element of Advance Encryption Standard

algorithm. Different algorithm presented in previous

work which are lagging behind in few parameters, which

is corrected and implemented in this paper. Proposed

architecture is implemented in VHDL Using Xilinx ISE

12.1 on device xc3s1200e-5fg320 of Spartan family.

Keywords — S-Box, AES, Galois Field, VHDL, Spartan.

I. INTRODUCTION

AES encryption is an efficient scheme for both

hardware and software implementation. Much work

has been presented on hardware implementations of

AES using field programmable gate arrays, and

comprehensive analyses of the performance of the

AES finalists was presented based on FPGA

implementations, before Rijndael was selected as the

AES algorithm. One of the most common and straight

forward implementation of the S-Box for the SubByte

operation which was done in previous work was to

have the pre-computed values stored in a ROM based

lookup table. In this implementation, all 256 values are

stored in a ROM and the input byte would be wired to

the ROM’s address bus. However, this method suffers

from an unbreakable delay since ROMs have a fixed

access time for its read and write operation.

Furthermore, such implementation is expensive in

terms of hardware.

To Speed the operation a pre computation based

technique is proposed which is much faster in terms of

input to output delay but consumes much power and

area on chip.

However the need is to design an S-BOX which is

efficient in terms of:

 Speed

 Area

 Power

II. AES ALGORITHM

The Advanced Encryption Standard (AES) also called

the Rijndael algorithm, specifies a FIPS (Federal

Information Processing Standards Publications)

approved cryptographic algorithm that can be used to

protect electronic data. The AES algorithm is a

symmetric block cipher that can encrypt (encipher) and

decrypt (decipher) information. Encryption converts

data to an unintelligible form called cipher-text;

decrypting the cipher-text converts the data back into

its original form, called plaintext. The AES algorithm

is capable of using cryptographic keys of 128, 192, and

256 bits to encrypt and decrypt data in blocks of 128

bits.

Encryption Process

The Encryption process of Advanced Encryption

Standard algorithm is presented below, in figure 1.

Figure 1: The Encryption process of AES algorithm

ByteSub(State)

ShiftRow(State)

MixColumn(State)

AddRoundKey(State, RoundKey)

i = i + 1

ByteSub(State)

ShiftRow(State)

AddRoundKey(State, RoundKey)

No

Yes
i < 𝑁𝑟

AddRoundKey(State, RoundKey)

i = 1

w[i • 𝑁𝑏]

w[0]

w[𝑁𝑟 • 𝑁𝑏]

K

e

y

S

c

h

e

d

u

l

e

mailto:%20%09%09%20%20%20%20%20%20%20%20%20%20prahladkh@gmail.com

IJDACR

 ISSN: 2319-4863

International Journal of Digital Application & Contemporary research

Website: www.ijdacr.com (Volume 1, Issue 12, July 2013)

This block diagram is generic for AES specifications.

It consists of a number of different transformations

applied consecutively over the data block bits, in a

fixed number of iterations, called rounds. The number

of rounds depends on the length of the key used for the

encryption process.

Decryption Process

The Decryption process of Advanced Encryption

Standard algorithm is presented below, in figure 2.

Figure 2: The Decryption process of AES algorithm

This process is direct inverse of the Encryption

process. All the transformations applied in Encryption

process are inversely applied to this process. Hence the

last round values of both the data and key are first

round inputs for the Decryption process and follows in

decreasing order.

III. PROPOSED S-BOX DESIGN METHOD

One of the most common and straight forward

implementation of the S-Box for the SubByte

operation which was done in previous work was to

have the pre-computed values stored in a ROM based

lookup table. In this implementation, all 256 values are

stored in a ROM and the input byte would be wired to

the ROM’s address bus. However, this method suffers

from an unbreakable delay since ROMs have a fixed

access time for its read and write operation [7].

Furthermore, such implementation is expensive in

terms of hardware. A more refined way of

implementing the S-Box is to use combinational logic.

Such examples of work that implements the S-Box

using this method were [4], [5] and [7]. This S-Box has

the advantage of having small area occupancy, in

addition to be capable of being pipelined for increased

performance in clock frequency. The S-Box

architecture discussed in this paper is based on the

combinational logic implementation. The steps

involved in constructing the multiplicative inverse

module for the S-Box using composite field arithmetic

is expressed as under. Since both the SubByte and

InvSubByte transformation are similar other than their

operations which involve the Affine Transformation

and its inverse, therefore only the implementation of

the SubByte operation will be discussed in this paper.

The multiplicative inverse computation will first be

covered and the affine transformation will then follow

to complete the methodology involved for constructing

the S-Box for the SubByte operation [2]. For the

InvSubByte operation, we can reuse multiplicative

inversion module and combine it with the Inverse

Affine Transformation, as shown in Figure 3.

Figure 3: Combined SubByte and InvSubByte sharing a common

multiplicative inversion module

The individual bits in a byte representing a GF (28)

element can be viewed as coefficients to each power

term in the GF (28) polynomial. For instance,

{10001011}2 is representing the polynomial 𝑞7 +
 𝑞3 + 𝑞 + 1 in GF (28). From [3], it is stated that

any arbitrary polynomial can be represented as 𝑏𝑥 +
 𝑐, given an irreducible polynomial of 𝑥2 + 𝐴𝑥 + 𝐵.

Thus, element in GF (28) may be represented as 𝑏𝑥 +
 𝑐 where b is the most significant nibble while 𝑐 is the

least significant nibble. From here, the multiplicative

inverse can be computed using the equation below [3].

(𝑏𝑥 + 𝑐)−1 = 𝑏(𝑏2𝐵 + 𝑏𝑐𝐴 + 𝑐2)−1𝑥
+ (𝑐 + 𝑏𝐴)(𝑏2𝐵 + 𝑏𝑐𝐴 + 𝑐2)−1

From [4], the irreducible polynomial that was selected

was 𝑥2 + 𝑥 + 𝜆. Since 𝐴 = 1 and 𝐵 = 𝜆, then the

equation could be simplified to the form as shown

below.

(𝑏𝑥 + 𝑐)−1 = 𝑏(𝑏2𝜆 + 𝑐(𝑏 + 𝑐)−1𝑥
+ (𝑐 + 𝑏) (𝑏2𝜆 + 𝑐(𝑏 + 𝑐)−1

InvByteSub(State)

InvShiftRow(State)

InvMixColumn(State)

AddRoundKey(State, InvRoundKey)

i = i − 1

InvByteSub(State)

InvShiftRow(State)

AddRoundKey(State, InvRoundKey)

No

Yes

i > 1

AddRoundKey(State, InvRoundKey)

i = 𝑁𝑟

w[i • 𝑁𝑏]

w[𝑁𝑟 • 𝑁𝑏]

w[0]

K

e

y

S

c
h

e

d
u

l

e

IJDACR

 ISSN: 2319-4863

International Journal of Digital Application & Contemporary research

Website: www.ijdacr.com (Volume 1, Issue 12, July 2013)

The above equation indicates that there are multiply,

addition, squaring and multiplication inversion in GF

(24) operations in Galois Field. Each of these operators

can be transformed into individual blocks when

constructing the circuit for computing the

multiplicative inverse. From this simplified equation,

the multiplicative inverse circuit GF (28) can be

produced as shown in Figure 4.

Figure 4: S-Box Architecture

The legends for the blocks within the multiplicative inversion module from above are illustrated in the Figure 5

below

Figure 5: Legends for the building blocks within the multiplicative inversion module

Multiplicative

Inverse Out
GF (28)

Element In

𝛿 Isomorphic mapping to Composite Fields

𝑥2 Squarer in GF (24)

Xλ Multiplication with constant, λ in GF (24)

⊕ Adding operation in GF (24)

𝑥−1 Multiplicative Inversion in GF (24)

Multiplication operation in GF (24)

𝛿−1 Inverse Isomorphic mapping to GF (28)

IJDACR

 ISSN: 2319-4863

International Journal of Digital Application & Contemporary research

Website: www.ijdacr.com (Volume 1, Issue 12, July 2013)

IV. SIMULATION AND RESULTS

Here we show the FPGA implementation and results

of given architectures for S-box implemented on

Xilinx xc3s1200e-5fg320 device.

Figure 6: Main Module of S-Box

Figure 7: S-Box with PCT (Pre Computation Technique)

Xilinx ISE 12.1 is used to synthesize the design and

provide post placement timing results. Table below

showing the area consumed by various s-box

architectures:

Table 1: Comparison of Various S-box architectures

V. CONCLUSION

This paper provides an approach for FPGA

Implementation of Improved S-BOX Architecture for

Advanced Encryption Standard. This approach will

lead to generate more secure block ciphers, solve the

problem of the fixed structure S-boxes, and will

increase the security level of the AES block cipher

system. The proposed design is efficient in terms of

area as well as speed compared to the fastest known

implementation of S-box.

REFERENCES

[1] Advanced Encryption Standard (AES) – GIAC, available

at : www.giac.org/cissp-papers/42.pdf

[2] Minli Dai, “Innovative Computing and Information”,
International Conference, ICCIC 2011, Wuhan, China,

September 17-18, 2011.

[3] Vincent Rijmen, “Efficient Implementation of the

Rijndael S-Box.”, Katholieke University Leuven, Dept.
ESAT, Belgium.

[4] Akashi Satoh, Sumio Morioka, Kohji Takano and Seiji

Munetoh, “A Compact Rijndael Hardware Architecture

with S-Box Optimization”, Springer-Verlag Berlin
Heidelberg, 2001.

[5] X. Zhang and K. K. Parhi, “High Speed VLSI

architectures for AES algorithm”, IEEE Transactions on

VLSI Systems, Vol.12, No. 9, pp 957-967, 2004.

[6] R. Liu, K.K.Parhi “Fast composite field architectures for
Advanced Encryption standard” Proceedings

GLSVLSI’08, Orlando, Florida, USA, pp 65-70, May 4–

6, 2008.

[7] T Good, M. Benaissa, “AES on FPGA from the Fastest

to the Smallest”, LNCS 3659, pp. 427-440, 2004.

[8] J Zambreno, D. Nguyen, Alok Choudhary, “Exploring

Area/Delay Trade-offs in an AES FPGA Implementation”
Lecture Notes in Computer Science 3203, Proc.FPL,

Antwerp, Belgium, pp 575-585, 2004.

[9] M. M. Wong, M.L.D. Wong, “A high throughput Low

power compact AES S-box implementation using
composite field arithmetic and Algebraic form

representation”, Proc. IEEE 2nd Asia Symposium on

Quality Electronic Design, pp 318-323, 2010.

[10] Rashmi Ramesh Rachh, P.V. Ananda Mohan and B.S.
Anami, “Efficient Implementations of AES S box and

Inverse S- box”, Proc. IEEE TENCON, Singapore, pp 1-

6, 2009.

[11] M. Fayed, M. El-Kharashi and F. Watheq Gebali, “A
High-Speed, Fully-Pipelined VLSI Architecture for

Real-Time AES”, 4th International Conference on

Information & Communications Technology, 2006.

S-BOX SLICES GATE COUNT

ROM-based 0 67739

PCT-BASED 168 2643

GF- BASED 58 1378

http://www.giac.org/cissp-papers/42.pdf

