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Abstract –This paper presents the performance of 

Neural Network for various values of number of 

clusters, based on experiments. The optimization of 

output is done using Particle Swarm Optimization 

(PSO) by selecting initial through PSO. Particle 

Swarm Optimization is used to optimize the output of 

our system, by appropriate selecting the input 

parameters through PSO. In this paper, an algorithm 

based on the Particle Swarm Optimization and Neural 

Network for analyzing program behaviour in intrusion 

detection is evaluated by experiments. Preliminary 

experiments with KDD cup’99 Data set show that the 

PSO optimized Neural Network can effectively detect 

intrusive attacks and achieves a low false positive rate.   

 

Keywords – Intrusion Detection, KDD cup’99, Neural 

Network, PSO. 

 

I. INTRODUCTION 

In the past two decades, networks have experienced 

tremendous growth that has speed up a shift in 

computing environments from centralized computer 

systems to network information systems. A large 

volume of valuable information such as personal 

profiles and credit card information is distributed 

and transferred through networks. Hence, network 

security has become more important than ever. 

However, given open and complex interconnected 

network systems, it is difficult to establish a secure 

networking environment. Intruders endanger system 

security by crashing services, changing critical data, 

and stealing important information. 

Intrusion detection systems (IDSs) are 

designed to discover malicious activities that 

attempt to compromise the confidentiality, integrity 

and assurance of computer systems. Unlike a 

firewall that filters “bad” traffic, an IDS analyzes 

packets to detect malicious attack attempts.  

Intrusion detection systems have become 

critical components in network security. Therefore, 

two factors need to be considered to ensure IDS 

effectively. First, the IDS should deliver reliable 

detection results. The detection method should be 

effective in discovering intrusions since poor 

detection performance ruins the trustworthiness of 

the IDS. Second, the IDS should be able to survive 

in hostile environments or even under attack. 

However, it is challenging for IDSs to maintain high 

detection accuracy. An IDS that uses attack 

signatures to detect intrusions cannot discover novel 

attacks. As the number of new intrusions increases, 

these IDSs are becoming incapable of protecting 

computers and applications. Therefore, a detection 

approach that is able to discover new attacks is 

necessary for building reliable IDSs. 

Previous research work [1] uses back-

propagation algorithm for learning and training the 

neural network, but there are two major 

disadvantages with back-propagation algorithm. 

First is that the initialization of the NN weights is a 

blind process hence it is not possible to find out 

globally optimized initial weights and there is a 

danger that the network output would run towards 

local optima hence the overall tendency of the 

network to find out a global solution is greatly 

affected. The second problem is that back-

propagation algorithm is very slow in convergence 

and there is a possibility that network never 

converges. This problem of local optimum solution 

can be solved by optimizing the initial weights of 

neural network. For this we use particle swarm 

optimization (PSO) algorithm which is specialized 

for global searching. For this we first determine the 

number of inputs, layers and hidden neurons of the 

neural network and then we would use the back-

propagation algorithm to train the networks using 

the weights optimized by PSO.  

A computer system should provide 

confidentiality, integrity and assurance against 

denial of service. However, due to increased load 

and connectivity more and more system is subject to 

attack by intruders. These attempts try to exploit 

flaws in the operating system as well as in the 

application programs. In fact, it is not possible to 

build a complete secure system. It can have 

cryptographic methods but they have their own 

problems as passwords can easily be cracked, users 

can lose their passwords and entire crypto-system 

can be broken. Even a truly secure system is 

vulnerable to abuse by insiders who abuse their 
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privileges. Also, we need a balance between access 

control and user efficiency as stricter the 

mechanism, the lower the efficiency. So we need a 

system which is real time i.e. we would like to detect 

them as soon as possible and take appropriate action. 

This is what an intrusion detection system does. It is 

reactive rather than proactive. This dissertation tries 

to build a system which created clusters from its 

input data by labeling clusters as normal or 

anomalous data instances and finally used these 

clusters to classify unseen network data instances as 

either normal or anomalous. Both training and 

testing was done using different subset of KDD Cup 

99 data which is very popular and widely used 

intrusion attack dataset. 

II. PROPOSED METHOD 

In this research work, Particle Swarm Optimized 

Neural Network approach determines optimum 

number of clusters in analyzed data. 

 

Block Diagram 

 
Figure 1: Block diagram for proposed approach using Neural 

Network only 
 

 
Figure 2: Block diagram for proposed approach using PSO 

optimized Neural Network 

 

Figure 1 shows the basic block diagram of Neural 

Network based intrusion detection system and 

Figure 2 shows the block diagram for the proposed 

research work. It includes following phases. 

Data Acquisition 

In the very first phase, the test data is taken form 

KDD Cup’99 dataset. Since KDD’99 [2] has been 

the most wildly used data set for the evaluation of 

anomaly detection methods. This data set is prepared 

by Stolfo et al. [3] and is built based on the data 

captured in DARPA’98 IDS evaluation program [4]. 

DARPA’98 is about 4 gigabytes of compressed raw 

(binary) TCP dump data of 7 weeks of network 

traffic, which can be processed into about 5 million 

connection records, each with about 100 bytes. The 

two weeks of test data have around 2 million 

connection records. KDD training dataset consists of 

approximately 4,900,000 single connection vectors 

each of which contains 41 features and is labelled as 

either normal or an attack, with exactly one specific 

attack type. The simulated attacks fall in one of the 

following four categories: 

1. Denial of Service Attack (DoS): It is an 

attack in which the attacker makes some 

computing or memory resource too busy or 

too full to handle legitimate requests, or 

denies legitimate users access to a machine. 

2. User to Root Attack (U2R): It is a class of 

exploit in which the attacker starts out with 

access to a normal user account on the system 

(perhaps gained by sniffing passwords, a 

dictionary attack, or social engineering) and 

is able to exploit some vulnerability to gain 

root access to the system. 

3. Remote to Local Attack (R2L): It occurs 

when an attacker who has the ability to send 

packets to a machine over a network but who 

does not have an account on that machine 

exploits some vulnerability to gain local 

access as a user of that machine. 

4. Probing Attack: It is an attempt to gather 

information about a network of computers for 

the apparent purpose of circumventing its 

security controls.  

The datasets contain a total number of 24 training 

attack types, with an additional 14 types in the test 

data only. KDD’99 features can be classified into 

five groups: 

1. Basic Features: This category 

encapsulates all the attributes that can be 

extracted from a TCP/IP connection. Most 

of these features leading to an implicit 

delay in detection. 

2. Traffic Features: This category includes 

features that are computed with respect to a 

window interval and is divided into two 

groups. 

3. “Same host” Features: It examine only 

the connections in the past 2 seconds that 

have the same destination host as the 

current connection, and calculate statistics 

related to protocol behaviour, service, etc. 

4. “Same service” Features: It examines 

only the connections in the past 2 seconds 

that have the same service as the current 

connection. 

The two aforementioned types of “traffic” 

features are called time-based. However, 

there are several slow probing attacks that 

scan the hosts (or ports) using a much 

larger time interval than 2 seconds, for 
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example, one in every minute. As a result, 

these attacks do not produce intrusion 

patterns with a time window of 2 seconds. 

To solve this problem, the “same host” and 

“same service” features are re-calculated 

but based on the connection window of 100 

connections rather than a time window of 2 

seconds. These features are called 

connection-based traffic features. 

5. Content Features: Unlike most of the DoS 

and Probing attacks, the R2L and U2R 

attacks don’t have any intrusion frequent 

sequential patterns. This is because the 

DoS and Probing attacks involve many 

connections to some host(s) in a very short 

period of time; however the R2L and U2R 

attacks are embedded in the data portions 

of the packets, and normally involves only 

a single connection. To detect these kinds 

of attacks, we need some features to be able 

to look for suspicious behavior in the data 

portion, e.g., number of failed login 

attempts. These features are called content 

features. 

Extract Class 

There were a total of 24 attack types in the data set. 

The simulated attacks fell in exactly one of the four 

categories, User to Root; Remote to Local; Denial of 

Service; and Probe. 

 Denial of Service (dos): Attacker tries to 

prevent legitimate users from using a 

service. 

 Remote to Local (r2l): Attacker does not 

have an account on the victim machine, 

hence tries to gain access. 

 User to Root (u2r): Attacker has local 

access to the victim machine and tries to 

gain super user privileges. 

 Probe: Attacker tries to gain information 

about the target host. 

Out of these, only five classes of test data is taken 

for training and testing purpose out of which three 

come under DOS attack and one comes under probe 

attack. Each class is labelled as one specific kind of 

attack. Table 1 shows the extracted class of attacks.  

 

Table 1: DOS Attacks 
S. No Attack Category 

1 Smurf DOS 

2 Neptune DOS 

3 Back DOS 

4 Normal Normal 

5 IPsweep Probe 

1. Smurf Attack: The Smurf Attack is a way 

of generating significant computer 

network traffic on a victim network. This is 

a type of denial-of-service attack that 

floods a system via spoofed broadcast ping 

messages. This attack relies on a 

perpetrator sending a large amount 

of ICMP (Internet Control Message 

Protocol) echo request (ping) traffic 

to IP broadcast addresses, all of which have 

a spoofed source IP address of the intended 

victim.  

2. Neptune Attack: It is a denial of service 

attack to which every TCP/IP 

implementation is vulnerable (to some 

degree). Each half-open TCP connection 

made to a machine causes the 'TCPD' 

server to add a record to the data structure 

that stores information describing all 

pending connections. This data structure is 

of finite size, and it can be made to 

overflow by intentionally creating too 

many partially-open connections. 

3. Back Attack: It involves sending forged 

requests of some type to a very large 

number of computers that will reply to the 

requests. Using Internet protocol spoofing, 

the source address is set to that of the 

targeted victim, which means all the replies 

will go to (and flood) the target.  

4. Normal: Data which does not contains any 

attack. 

5. IPsweep: The IPsweep and Portsweep, as 

their names suggest, sweep through IP 

addresses and port numbers fora victim 

network and host respectively looking for 

open ports that could potentially be used 

later in an attack. 

PSO Optimization of Neural Network 

Particle Swarm Optimization (PSO) is an intelligent 

algorithm to fix the discrete optimization problem. 

Thus the algorithm should be improved because the 

optimization of the parameters in the back 

propagation neural network is continuous 

optimization problem. Assuming there is following 

continuous optimization problem: 

𝑦 = min𝑓(𝑥), 𝑋 = (𝑥1, 𝑥2, … 𝑥𝑑)      (1) 

 

Particle Swarm Algorithm 

1. Begin 

2. Factor settings and swarm initialization 

3. Evaluation 

4. g = 1 

5. While (the stopping criterion is not met) do 

6. for each particle 



IJDACR 

 ISSN: 2319-4863 

 
International Journal of Digital Application & Contemporary Research 

Website: www.ijdacr.com (Volume 4, Issue 11, June 2016) 

7. Update velocity 

8. revise place and localized best place 

9. Evaluation 

10. End For 

11. Update leader (global best particle) 

12. g + + 

13. End While 

14. End 
 

 
Figure 3: Flow diagram for PSO-BP Neural Network based 

network intrusion detection model 

 

The PSO procedure has various phases consist of 

Initialization, Evaluation, Update Velocity and 

Update Position. 

Initialization 

The initialization phase is used to determine the 

position of the m particles. The random initialization 

is one of the most popular methods for this job. 

There is no assurance that a randomly created 

particle be a better answer and this will make the 

initialization more attractive. 

A good initialization algorithm makes the 

optimization algorithm more efficient and reliable. 

For initialization, initial information or knowledge 

of the problem can help the algorithm to converge in 

less iterations. 

Update Velocity and Position 

In each iteration, each particle updates its velocity 

and position according to its heretofore best 

position, its current velocity and some information 

of its neighbours. Equation (2) is used for updating 

the velocity: 

𝑉𝑖
(𝑘+1)

= 𝑤 ∗ 𝑉𝑖
𝑘 + 𝐶1 ∗ 𝑟𝑎𝑛𝑑1 ∗ (𝑝𝑏𝑒𝑠𝑡𝑖

𝑘 − 𝑆𝑖
𝑘)

+ 𝐶2 ∗ 𝑟𝑎𝑛𝑑2 ∗ (𝑔𝑏𝑒𝑠𝑡
𝑘 − 𝑆𝑖

𝑘) 
(2) 

Where 𝑉𝑖
𝑘 is the velocity of 𝑖𝑡ℎ particle vector at 𝑘𝑡ℎ 

iteration; 

𝑤 is the weighting function;  

𝐶1and 𝐶2 are the positive weighting factors;  

𝑟𝑎𝑛𝑑1 and 𝑟𝑎𝑛𝑑2are the random numbers between 

0 and 1;  

𝑆𝑖
𝑘 is the current position of 𝑖𝑡ℎ particle vector ℎ(𝑛) 

at 𝑘𝑡ℎ iteration; 

𝑝𝑏𝑒𝑠𝑡𝑖
𝑘is the personal best of the 𝑖𝑡ℎ particle at the 

𝑘𝑡ℎ iteration;  

𝑔𝑏𝑒𝑠𝑡𝑘is the group best of the group at the 𝑘𝑡ℎ 

iteration.  

The searching point in the solution space may be 

modified by the following equation: 

𝑆𝑖
(𝑘+1)

= 𝑆𝑖
𝑘 + 𝑉𝑖

(𝑘+1)
            (3) 

The first term of Equation (2) is the previous 

velocity of the particle vector. The second and third 

terms are used to change the velocity of the particle 

vector. Without the second and third terms, the 

particle vector will keep on ‘‘flying’’ in the same 

direction until it hits the boundary. Namely, it 

corresponds to a kind of inertia represented by the 

inertia constant, 𝑤 and tries to explore new areas. 

 

Training with Optimized Neural Network 

In previous phase, neural network is optimized using 

particle swarm optimization then the optimized NN 

is used to train extracted class data using back 

propagation algorithm. 

 
 

Figure 4: Structure for back propagation neural network  

 

Objective Function 

Back propagation neural network is a type of multi-

layer feed forward network in which each layer is 

connected by transfer functions and can fulfil 

arbitrary nonlinear mapping. It is widely applied in 

stock price, petroleum price, economic time 
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sequence, network flow and other nonlinear areas 

and attained satisfactory performance. The structure 

of back propagation neural network is shown in 

Figure 3. 

The basic learning process of the back propagation 

neural network algorithm is as follows: 

1. Initialize the connection weights 𝑤𝑖𝑗 , 𝑣𝑗𝑡 

and threshold 𝜃𝑗in the back propagation 

neural network. 

2. Input the first learning sample couples to 

the back propagation neural network. 

3. Compute the input 𝑢𝑗of each neural unit 

and the output ℎ𝑗in the hidden layer. The 

equation is: 

𝑢𝑗 = ∑ 𝑤𝑖𝑗𝑥𝑖 − 𝜃𝑗
𝑛
𝑖=1       (4) 

ℎ𝑗 = 𝑓(𝑢𝑗) =
1

1+exp⁡(−𝑢𝑗)
      (5) 

4. Compute the input 𝑙𝑡 of each neural unit 

and the output 𝑦𝑡in the output layer. The 

equation is: 

𝑙𝑡 = ∑𝑣𝑗𝑡ℎ𝑗 − 𝛾𝑡                (6) 

𝑦𝑡 =
1

1+exp⁡(−𝑙𝑡)
    (7) 

5. Compute the weights error 𝛿𝑡which is 

connected to the neural unit 𝑡 in the output 

layer. 

𝛿𝑡 = (𝑐𝑡 − 𝑦𝑡)𝑦𝑡(1 − 𝑦𝑡)         (8) 

In the equation (8), 𝑐𝑡 represents the 

expectation of the sample. 

6. Compute the weights error 𝛿𝑗which is 

connected to the neural unit 𝑗 in the hidden 

layer. 

𝛿𝑗 = ∑ 𝛿𝑡𝑣𝑗𝑡ℎ𝑗(1 − ℎ𝑗)
𝑞
𝑡=1          (9) 

7. Update the connection weights 𝑣𝑗𝑡 and 

threshold 𝛾𝑡 in the back propagation neural 

network. 

𝑣𝑗𝑡(𝑁 + 1) = 𝑣𝑗𝑡(𝑁) + 𝛼𝛿𝑡ℎ𝑗     (10) 

𝛾𝑡(𝑁 + 1) = 𝛾𝑡(𝑁) + 𝛽𝛿             (11) 

8. Update the connection weights 𝑤𝑗𝑡  and 

threshold 𝜃𝑗in the back propagation neural 

network. 

𝑤𝑗𝑡(𝑁 + 1) = 𝑤𝑗𝑡(𝑁) + 𝛼𝛿𝑗𝑥𝑖    (12) 

𝜃𝑗(𝑁 + 1) = 𝜃𝑗(𝑁) + 𝛽𝛿𝑗         (13) 

 

9. Input the next learning sample and go to the 

step 3 until all of the samples are trained. 

10. Back propagation neural network go to a 

new round of learning. If it meets the 

equation (14), the training of the back 

propagation network can be ended. 

|∑ 𝐸𝑘
𝑧
𝑘=1 | ≤ 𝜀                (14) 

In the equation (14), 𝜀 represents the accuracy 

requirement of back propagation neural network, 𝐸𝑘 

represents the mean square error and the definition 

are as follows: 

𝐸𝑘 =
1

2
∑ (𝑐𝑡 − 𝑦𝑡)

2𝑞
𝑡=1              (15) 

Before training the back propagation neural 

network, proper connection weights 𝑤𝑖𝑗  and 𝑣𝑗𝑡 of 

the back propagation neural network should be 

chosen. Normally the initialization is randomly 

which can cause the convergence is slow and the 

defect of local optimal solutions. 

Pseudo Code  

The back propagation algorithm for a 3-layer 

network (only one hidden layer) is as follows: 

initialize the weights in the network (often small 

random values) 

do 
for each image i in the training set of 

database O = neural-network-

output(network, i) 

T = desired output for i 

calculate error (T - O) at the output units; 

calculate 𝛿ℎ for all weights from hidden layer 

to output layer; 

calculate 𝛿𝑖 for all weights from input layer 

to hidden layer; 

update the weights to minimize error in the 

network; until some stopping criterion 

satisfied 

return the network 

 

III. SIMULATION AND RESULTS 

The performance of proposed algorithms has been 

studied by means of MATLAB simulation. 

 

 
 

Figure 5: Confusion Matrix plot for Intrusion classifier scheme 

using Neural Network 
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Figure 6: Accuracy graph for neural network based classifier 

 

Table 1: Accuracy for neural network based classifier 

Class Number Accuracy 

1 0.9795 

2 0.9795 

3 0.9899 

4 0.9895 

5 0.9800 

 

 
Figure 7: Precision graph for neural network based classifier 

 

Table 2: Precision for neural network based classifier 

Class Number Precision 

1 0.7500 

2 0.7692 

3 0.8333 

4 1.0000 

5 0.8500 

 

 
Figure 8: Sensitivity graph for neural network based classifier 

 

Table 3: Sensitivity for neural network based classifier 
 

Class Number Sensitivity 

1 0.7500 

2 0.7692 

3 1.0000 

4 0.7000 

5 0.8500 

 

 
Figure 9: Confusion Matrix plot for Intrusion classifier scheme 

using PSO-Neural Network 

 

 
Figure 10: Accuracy graph for PSO-Neural Network based 

classifier 
 

Table 4: Accuracy for PSO-Neural Network based classifier 

 

Class Number Accuracy 

1 0.9966 

2 1.0000 

3 0.9966 

4 0.9965 

5 0.9967 
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Figure 11: Precision graph for PSO-Neural Network based 

classifier 
 

Table 5: Precision for PSO-Neural Network based classifier 

 

Class Number Precision 

1 1.0000 

2 1.0000 

3 0.9375 

4 1.0000 

5 0.9524 

 

 
Figure 12: Sensitivity graph for PSO-Neural Network based 

classifier 

 
Table 6: Sensitivity for PSO-Neural Network based classifier 

 

Class Number Sensitivity 

1 0.9167 

2 1.0000 

3 1.0000 

4 0.9000 

5 1.0000 

 

IV. CONCLUSION 

The preliminary experiments with the 1999 KDD 

cup’99 Database have shown that this approach is 

able to effectively detect intrusive program 

behaviour. With the frequency-weighting method 

where each entry is equal to the number of 

occurrences of a system call during the TCP 

(Transmission Control Protocol) communication. 

Neural Network training process easily added to the 

training data set without changing the weights of the 

existing training samples. Particle Swarm 

Optimization is used to optimize the output of our 

system, by appropriate selecting the input 

parameters through PSO. 
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