
IJDACR

 ISSN: 2319-4863

International Journal of Digital Application & Contemporary Research

Website: www.ijdacr.com (Volume 4, Issue 11, June 2016)

Intrusion Detection System based on Particle Swarm

Optimized Neural Network

Priyanka Pawar

priyanka_k8546@yahoo.com

Damodar Tiwari

damodarptiwari21@gmail.com

Abstract –This paper presents the performance of

Neural Network for various values of number of

clusters, based on experiments. The optimization of

output is done using Particle Swarm Optimization

(PSO) by selecting initial through PSO. Particle

Swarm Optimization is used to optimize the output of

our system, by appropriate selecting the input

parameters through PSO. In this paper, an algorithm

based on the Particle Swarm Optimization and Neural

Network for analyzing program behaviour in intrusion

detection is evaluated by experiments. Preliminary

experiments with KDD cup’99 Data set show that the

PSO optimized Neural Network can effectively detect

intrusive attacks and achieves a low false positive rate.

Keywords – Intrusion Detection, KDD cup’99, Neural

Network, PSO.

I. INTRODUCTION

In the past two decades, networks have experienced

tremendous growth that has speed up a shift in

computing environments from centralized computer

systems to network information systems. A large

volume of valuable information such as personal

profiles and credit card information is distributed

and transferred through networks. Hence, network

security has become more important than ever.

However, given open and complex interconnected

network systems, it is difficult to establish a secure

networking environment. Intruders endanger system

security by crashing services, changing critical data,

and stealing important information.

Intrusion detection systems (IDSs) are

designed to discover malicious activities that

attempt to compromise the confidentiality, integrity

and assurance of computer systems. Unlike a

firewall that filters “bad” traffic, an IDS analyzes

packets to detect malicious attack attempts.

Intrusion detection systems have become

critical components in network security. Therefore,

two factors need to be considered to ensure IDS

effectively. First, the IDS should deliver reliable

detection results. The detection method should be

effective in discovering intrusions since poor

detection performance ruins the trustworthiness of

the IDS. Second, the IDS should be able to survive

in hostile environments or even under attack.

However, it is challenging for IDSs to maintain high

detection accuracy. An IDS that uses attack

signatures to detect intrusions cannot discover novel

attacks. As the number of new intrusions increases,

these IDSs are becoming incapable of protecting

computers and applications. Therefore, a detection

approach that is able to discover new attacks is

necessary for building reliable IDSs.

Previous research work [1] uses back-

propagation algorithm for learning and training the

neural network, but there are two major

disadvantages with back-propagation algorithm.

First is that the initialization of the NN weights is a

blind process hence it is not possible to find out

globally optimized initial weights and there is a

danger that the network output would run towards

local optima hence the overall tendency of the

network to find out a global solution is greatly

affected. The second problem is that back-

propagation algorithm is very slow in convergence

and there is a possibility that network never

converges. This problem of local optimum solution

can be solved by optimizing the initial weights of

neural network. For this we use particle swarm

optimization (PSO) algorithm which is specialized

for global searching. For this we first determine the

number of inputs, layers and hidden neurons of the

neural network and then we would use the back-

propagation algorithm to train the networks using

the weights optimized by PSO.

A computer system should provide

confidentiality, integrity and assurance against

denial of service. However, due to increased load

and connectivity more and more system is subject to

attack by intruders. These attempts try to exploit

flaws in the operating system as well as in the

application programs. In fact, it is not possible to

build a complete secure system. It can have

cryptographic methods but they have their own

problems as passwords can easily be cracked, users

can lose their passwords and entire crypto-system

can be broken. Even a truly secure system is

vulnerable to abuse by insiders who abuse their

mailto:priyanka_k8546@yahoo.com
mailto:damodarptiwari21@gmail.com

IJDACR

 ISSN: 2319-4863

International Journal of Digital Application & Contemporary Research

Website: www.ijdacr.com (Volume 4, Issue 11, June 2016)

privileges. Also, we need a balance between access

control and user efficiency as stricter the

mechanism, the lower the efficiency. So we need a

system which is real time i.e. we would like to detect

them as soon as possible and take appropriate action.

This is what an intrusion detection system does. It is

reactive rather than proactive. This dissertation tries

to build a system which created clusters from its

input data by labeling clusters as normal or

anomalous data instances and finally used these

clusters to classify unseen network data instances as

either normal or anomalous. Both training and

testing was done using different subset of KDD Cup

99 data which is very popular and widely used

intrusion attack dataset.

II. PROPOSED METHOD

In this research work, Particle Swarm Optimized

Neural Network approach determines optimum

number of clusters in analyzed data.

Block Diagram

Figure 1: Block diagram for proposed approach using Neural

Network only

Figure 2: Block diagram for proposed approach using PSO

optimized Neural Network

Figure 1 shows the basic block diagram of Neural

Network based intrusion detection system and

Figure 2 shows the block diagram for the proposed

research work. It includes following phases.

Data Acquisition

In the very first phase, the test data is taken form

KDD Cup’99 dataset. Since KDD’99 [2] has been

the most wildly used data set for the evaluation of

anomaly detection methods. This data set is prepared

by Stolfo et al. [3] and is built based on the data

captured in DARPA’98 IDS evaluation program [4].

DARPA’98 is about 4 gigabytes of compressed raw

(binary) TCP dump data of 7 weeks of network

traffic, which can be processed into about 5 million

connection records, each with about 100 bytes. The

two weeks of test data have around 2 million

connection records. KDD training dataset consists of

approximately 4,900,000 single connection vectors

each of which contains 41 features and is labelled as

either normal or an attack, with exactly one specific

attack type. The simulated attacks fall in one of the

following four categories:

1. Denial of Service Attack (DoS): It is an

attack in which the attacker makes some

computing or memory resource too busy or

too full to handle legitimate requests, or

denies legitimate users access to a machine.

2. User to Root Attack (U2R): It is a class of

exploit in which the attacker starts out with

access to a normal user account on the system

(perhaps gained by sniffing passwords, a

dictionary attack, or social engineering) and

is able to exploit some vulnerability to gain

root access to the system.

3. Remote to Local Attack (R2L): It occurs

when an attacker who has the ability to send

packets to a machine over a network but who

does not have an account on that machine

exploits some vulnerability to gain local

access as a user of that machine.

4. Probing Attack: It is an attempt to gather

information about a network of computers for

the apparent purpose of circumventing its

security controls.

The datasets contain a total number of 24 training

attack types, with an additional 14 types in the test

data only. KDD’99 features can be classified into

five groups:

1. Basic Features: This category

encapsulates all the attributes that can be

extracted from a TCP/IP connection. Most

of these features leading to an implicit

delay in detection.

2. Traffic Features: This category includes

features that are computed with respect to a

window interval and is divided into two

groups.

3. “Same host” Features: It examine only

the connections in the past 2 seconds that

have the same destination host as the

current connection, and calculate statistics

related to protocol behaviour, service, etc.

4. “Same service” Features: It examines

only the connections in the past 2 seconds

that have the same service as the current

connection.

The two aforementioned types of “traffic”

features are called time-based. However,

there are several slow probing attacks that

scan the hosts (or ports) using a much

larger time interval than 2 seconds, for

Dataset

Acquisition
Extract

Class

Train it

with

NN

Network

Intrusion

Detection

model

Output

Test

Data

Dataset

Acquisition
Extract

Class

Train it with

Optimized NN

Network

Intrusion

Detection

Model

Output

Test

Data

PSO Optimization

of Neural
Network

IJDACR

 ISSN: 2319-4863

International Journal of Digital Application & Contemporary Research

Website: www.ijdacr.com (Volume 4, Issue 11, June 2016)

example, one in every minute. As a result,

these attacks do not produce intrusion

patterns with a time window of 2 seconds.

To solve this problem, the “same host” and

“same service” features are re-calculated

but based on the connection window of 100

connections rather than a time window of 2

seconds. These features are called

connection-based traffic features.

5. Content Features: Unlike most of the DoS

and Probing attacks, the R2L and U2R

attacks don’t have any intrusion frequent

sequential patterns. This is because the

DoS and Probing attacks involve many

connections to some host(s) in a very short

period of time; however the R2L and U2R

attacks are embedded in the data portions

of the packets, and normally involves only

a single connection. To detect these kinds

of attacks, we need some features to be able

to look for suspicious behavior in the data

portion, e.g., number of failed login

attempts. These features are called content

features.

Extract Class

There were a total of 24 attack types in the data set.

The simulated attacks fell in exactly one of the four

categories, User to Root; Remote to Local; Denial of

Service; and Probe.

 Denial of Service (dos): Attacker tries to

prevent legitimate users from using a

service.

 Remote to Local (r2l): Attacker does not

have an account on the victim machine,

hence tries to gain access.

 User to Root (u2r): Attacker has local

access to the victim machine and tries to

gain super user privileges.

 Probe: Attacker tries to gain information

about the target host.

Out of these, only five classes of test data is taken

for training and testing purpose out of which three

come under DOS attack and one comes under probe

attack. Each class is labelled as one specific kind of

attack. Table 1 shows the extracted class of attacks.

Table 1: DOS Attacks
S. No Attack Category

1 Smurf DOS

2 Neptune DOS

3 Back DOS

4 Normal Normal

5 IPsweep Probe

1. Smurf Attack: The Smurf Attack is a way

of generating significant computer

network traffic on a victim network. This is

a type of denial-of-service attack that

floods a system via spoofed broadcast ping

messages. This attack relies on a

perpetrator sending a large amount

of ICMP (Internet Control Message

Protocol) echo request (ping) traffic

to IP broadcast addresses, all of which have

a spoofed source IP address of the intended

victim.

2. Neptune Attack: It is a denial of service

attack to which every TCP/IP

implementation is vulnerable (to some

degree). Each half-open TCP connection

made to a machine causes the 'TCPD'

server to add a record to the data structure

that stores information describing all

pending connections. This data structure is

of finite size, and it can be made to

overflow by intentionally creating too

many partially-open connections.

3. Back Attack: It involves sending forged

requests of some type to a very large

number of computers that will reply to the

requests. Using Internet protocol spoofing,

the source address is set to that of the

targeted victim, which means all the replies

will go to (and flood) the target.

4. Normal: Data which does not contains any

attack.

5. IPsweep: The IPsweep and Portsweep, as

their names suggest, sweep through IP

addresses and port numbers fora victim

network and host respectively looking for

open ports that could potentially be used

later in an attack.

PSO Optimization of Neural Network

Particle Swarm Optimization (PSO) is an intelligent

algorithm to fix the discrete optimization problem.

Thus the algorithm should be improved because the

optimization of the parameters in the back

propagation neural network is continuous

optimization problem. Assuming there is following

continuous optimization problem:

𝑦 = min𝑓(𝑥), 𝑋 = (𝑥1, 𝑥2, … 𝑥𝑑) (1)

Particle Swarm Algorithm

1. Begin

2. Factor settings and swarm initialization

3. Evaluation

4. g = 1

5. While (the stopping criterion is not met) do

6. for each particle

IJDACR

 ISSN: 2319-4863

International Journal of Digital Application & Contemporary Research

Website: www.ijdacr.com (Volume 4, Issue 11, June 2016)

7. Update velocity

8. revise place and localized best place

9. Evaluation

10. End For

11. Update leader (global best particle)

12. g + +

13. End While

14. End

Figure 3: Flow diagram for PSO-BP Neural Network based

network intrusion detection model

The PSO procedure has various phases consist of

Initialization, Evaluation, Update Velocity and

Update Position.

Initialization

The initialization phase is used to determine the

position of the m particles. The random initialization

is one of the most popular methods for this job.

There is no assurance that a randomly created

particle be a better answer and this will make the

initialization more attractive.

A good initialization algorithm makes the

optimization algorithm more efficient and reliable.

For initialization, initial information or knowledge

of the problem can help the algorithm to converge in

less iterations.

Update Velocity and Position

In each iteration, each particle updates its velocity

and position according to its heretofore best

position, its current velocity and some information

of its neighbours. Equation (2) is used for updating

the velocity:

𝑉𝑖
(𝑘+1)

= 𝑤 ∗ 𝑉𝑖
𝑘 + 𝐶1 ∗ 𝑟𝑎𝑛𝑑1 ∗ (𝑝𝑏𝑒𝑠𝑡𝑖

𝑘 − 𝑆𝑖
𝑘)

+ 𝐶2 ∗ 𝑟𝑎𝑛𝑑2 ∗ (𝑔𝑏𝑒𝑠𝑡
𝑘 − 𝑆𝑖

𝑘)
(2)

Where 𝑉𝑖
𝑘 is the velocity of 𝑖𝑡ℎ particle vector at 𝑘𝑡ℎ

iteration;

𝑤 is the weighting function;

𝐶1and 𝐶2 are the positive weighting factors;

𝑟𝑎𝑛𝑑1 and 𝑟𝑎𝑛𝑑2are the random numbers between

0 and 1;

𝑆𝑖
𝑘 is the current position of 𝑖𝑡ℎ particle vector ℎ(𝑛)

at 𝑘𝑡ℎ iteration;

𝑝𝑏𝑒𝑠𝑡𝑖
𝑘is the personal best of the 𝑖𝑡ℎ particle at the

𝑘𝑡ℎ iteration;

𝑔𝑏𝑒𝑠𝑡𝑘is the group best of the group at the 𝑘𝑡ℎ

iteration.

The searching point in the solution space may be

modified by the following equation:

𝑆𝑖
(𝑘+1)

= 𝑆𝑖
𝑘 + 𝑉𝑖

(𝑘+1)
 (3)

The first term of Equation (2) is the previous

velocity of the particle vector. The second and third

terms are used to change the velocity of the particle

vector. Without the second and third terms, the

particle vector will keep on ‘‘flying’’ in the same

direction until it hits the boundary. Namely, it

corresponds to a kind of inertia represented by the

inertia constant, 𝑤 and tries to explore new areas.

Training with Optimized Neural Network

In previous phase, neural network is optimized using

particle swarm optimization then the optimized NN

is used to train extracted class data using back

propagation algorithm.

Figure 4: Structure for back propagation neural network

Objective Function

Back propagation neural network is a type of multi-

layer feed forward network in which each layer is

connected by transfer functions and can fulfil

arbitrary nonlinear mapping. It is widely applied in

stock price, petroleum price, economic time

Network data collection

Training Set

Train with Neural Network

Optimize parameters using PSO

Extract Class

Reach Iteration

Times?

Train it with Optimized NN

Network Intrusion Detection

Network Intrusion Detection model

Output

No

Yes Test

data

Input Layer

Hidden Layer

Output Layer

IJDACR

 ISSN: 2319-4863

International Journal of Digital Application & Contemporary Research

Website: www.ijdacr.com (Volume 4, Issue 11, June 2016)

sequence, network flow and other nonlinear areas

and attained satisfactory performance. The structure

of back propagation neural network is shown in

Figure 3.

The basic learning process of the back propagation

neural network algorithm is as follows:

1. Initialize the connection weights 𝑤𝑖𝑗 , 𝑣𝑗𝑡

and threshold 𝜃𝑗in the back propagation

neural network.

2. Input the first learning sample couples to

the back propagation neural network.

3. Compute the input 𝑢𝑗of each neural unit

and the output ℎ𝑗in the hidden layer. The

equation is:

𝑢𝑗 = ∑ 𝑤𝑖𝑗𝑥𝑖 − 𝜃𝑗
𝑛
𝑖=1 (4)

ℎ𝑗 = 𝑓(𝑢𝑗) =
1

1+exp⁡(−𝑢𝑗)
 (5)

4. Compute the input 𝑙𝑡 of each neural unit

and the output 𝑦𝑡in the output layer. The

equation is:

𝑙𝑡 = ∑𝑣𝑗𝑡ℎ𝑗 − 𝛾𝑡 (6)

𝑦𝑡 =
1

1+exp⁡(−𝑙𝑡)
 (7)

5. Compute the weights error 𝛿𝑡which is

connected to the neural unit 𝑡 in the output

layer.

𝛿𝑡 = (𝑐𝑡 − 𝑦𝑡)𝑦𝑡(1 − 𝑦𝑡) (8)

In the equation (8), 𝑐𝑡 represents the

expectation of the sample.

6. Compute the weights error 𝛿𝑗which is

connected to the neural unit 𝑗 in the hidden

layer.

𝛿𝑗 = ∑ 𝛿𝑡𝑣𝑗𝑡ℎ𝑗(1 − ℎ𝑗)
𝑞
𝑡=1 (9)

7. Update the connection weights 𝑣𝑗𝑡 and

threshold 𝛾𝑡 in the back propagation neural

network.

𝑣𝑗𝑡(𝑁 + 1) = 𝑣𝑗𝑡(𝑁) + 𝛼𝛿𝑡ℎ𝑗 (10)

𝛾𝑡(𝑁 + 1) = 𝛾𝑡(𝑁) + 𝛽𝛿 (11)

8. Update the connection weights 𝑤𝑗𝑡 and

threshold 𝜃𝑗in the back propagation neural

network.

𝑤𝑗𝑡(𝑁 + 1) = 𝑤𝑗𝑡(𝑁) + 𝛼𝛿𝑗𝑥𝑖 (12)

𝜃𝑗(𝑁 + 1) = 𝜃𝑗(𝑁) + 𝛽𝛿𝑗 (13)

9. Input the next learning sample and go to the

step 3 until all of the samples are trained.

10. Back propagation neural network go to a

new round of learning. If it meets the

equation (14), the training of the back

propagation network can be ended.

|∑ 𝐸𝑘
𝑧
𝑘=1 | ≤ 𝜀 (14)

In the equation (14), 𝜀 represents the accuracy

requirement of back propagation neural network, 𝐸𝑘

represents the mean square error and the definition

are as follows:

𝐸𝑘 =
1

2
∑ (𝑐𝑡 − 𝑦𝑡)

2𝑞
𝑡=1 (15)

Before training the back propagation neural

network, proper connection weights 𝑤𝑖𝑗 and 𝑣𝑗𝑡 of

the back propagation neural network should be

chosen. Normally the initialization is randomly

which can cause the convergence is slow and the

defect of local optimal solutions.

Pseudo Code

The back propagation algorithm for a 3-layer

network (only one hidden layer) is as follows:

initialize the weights in the network (often small

random values)

do
for each image i in the training set of

database O = neural-network-

output(network, i)

T = desired output for i

calculate error (T - O) at the output units;

calculate 𝛿ℎ for all weights from hidden layer

to output layer;

calculate 𝛿𝑖 for all weights from input layer

to hidden layer;

update the weights to minimize error in the

network; until some stopping criterion

satisfied

return the network

III. SIMULATION AND RESULTS

The performance of proposed algorithms has been

studied by means of MATLAB simulation.

Figure 5: Confusion Matrix plot for Intrusion classifier scheme

using Neural Network

IJDACR

 ISSN: 2319-4863

International Journal of Digital Application & Contemporary Research

Website: www.ijdacr.com (Volume 4, Issue 11, June 2016)

Figure 6: Accuracy graph for neural network based classifier

Table 1: Accuracy for neural network based classifier

Class Number Accuracy

1 0.9795

2 0.9795

3 0.9899

4 0.9895

5 0.9800

Figure 7: Precision graph for neural network based classifier

Table 2: Precision for neural network based classifier

Class Number Precision

1 0.7500

2 0.7692

3 0.8333

4 1.0000

5 0.8500

Figure 8: Sensitivity graph for neural network based classifier

Table 3: Sensitivity for neural network based classifier

Class Number Sensitivity

1 0.7500

2 0.7692

3 1.0000

4 0.7000

5 0.8500

Figure 9: Confusion Matrix plot for Intrusion classifier scheme

using PSO-Neural Network

Figure 10: Accuracy graph for PSO-Neural Network based

classifier

Table 4: Accuracy for PSO-Neural Network based classifier

Class Number Accuracy

1 0.9966

2 1.0000

3 0.9966

4 0.9965

5 0.9967

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Class Number

A
c
c
u
ra

c
y

Neural network Based classifier

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Class Number

P
re

c
is

io
n

Neural network Based classifier

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Class Number

S
e
n
s
it
iv

it
y

Neural network Based classifier

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Class Number

A
c
c
u
ra

c
y

pso-Neural network Based classifier

IJDACR

 ISSN: 2319-4863

International Journal of Digital Application & Contemporary Research

Website: www.ijdacr.com (Volume 4, Issue 11, June 2016)

Figure 11: Precision graph for PSO-Neural Network based

classifier

Table 5: Precision for PSO-Neural Network based classifier

Class Number Precision

1 1.0000

2 1.0000

3 0.9375

4 1.0000

5 0.9524

Figure 12: Sensitivity graph for PSO-Neural Network based

classifier

Table 6: Sensitivity for PSO-Neural Network based classifier

Class Number Sensitivity

1 0.9167

2 1.0000

3 1.0000

4 0.9000

5 1.0000

IV. CONCLUSION

The preliminary experiments with the 1999 KDD

cup’99 Database have shown that this approach is

able to effectively detect intrusive program

behaviour. With the frequency-weighting method

where each entry is equal to the number of

occurrences of a system call during the TCP

(Transmission Control Protocol) communication.

Neural Network training process easily added to the

training data set without changing the weights of the

existing training samples. Particle Swarm

Optimization is used to optimize the output of our

system, by appropriate selecting the input

parameters through PSO.

REFERENCE
[1] Chen Yan, “Intelligent Intrusion Detection based on

Soft Computing”, Seventh International Conference

on Measuring Technology and Mechatronics

Automation 2015.

[2] J. McHugh, “Testing intrusion detection systems: a

critique of the 1998 and 1999 darpa intrusion

detection system evaluations as performed by lincoln

laboratory,” ACM Transactions on Information and

System Security, Volume 3, No. 4, pp. 262–294, 2000.

[3] S. J. Stolfo, W. Fan, W. Lee, A. Prodromidis, and P.

K. Chan, “Cost based modeling for fraud and intrusion

detection: Results from the jam project,” discex,

Volume 02, p. 1130, 2000.

[4] R. P. Lippmann, D. J. Fried, J. W. Haines, D.

McClung, D. Weber, S. E. Webster, D. Wyschogrod,

R. K. Cunningham, and M. A. Zissman, “Evaluating

intrusion detection systems: The 1998 darpa off-line

intrusion detection evaluation,” Volume 02, pp.1012,

2000.

[5] Venkata Suneetha Takkellapati, G.V.S.N.R.V Prasad,

“Network Intrusion Detectionsystem based on Feature

Selection and Triangle area Support Vector Machine”,

International Journal of Engineering Trends and

Technology- Volume 03, Issue 4, 2012.

[6] Esh Narayan, Pankaj Singh and Gaurav Kumar Tak,

“Intrusion Detection System Using Fuzzy C-Means

Clustering with Unsupervised Learning via EM

Algorithms” VSRD-IJCSIT, Volume 2 (6), 502-510,

2012.

[7] Deepika Dave, Prof. Vineet Richhariya, “Intrusion

detection with KNN classification and DS- theory”,

IRACST Volume 2, No.2, April 2012.

[8] P.S.Prabhu, “Network Intrusion Detection Using

Enhanced Adaboost Algorithm”, International Journal

of Communications and Engineering Volume 3, No.3,

Issue: 02 March 2012.

[9] Dalila BOUGHACI, Mohamed Lamine HERKAT,

Mohamed Amine LAZZAZI,“A Specific Fuzzy

Genetic Algorithm for Intrusion Detection”, ICCIT,

2012.

[10] R. Shanmugavadivu, Dr.N.Nagarajan, “Network

Intrusion Detection System Using Fuzzy Logic”

IJCSE Volume 2 No. 1, 2011.

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Class Number

P
re

c
is

io
n

Neural network Based classifier

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Class Number

S
e
n
s
it
iv

it
y

Pso-Neural network Based classifier

