Performance Evaluation of Precoded-STBC over Rayleigh Fading Channel using BPSK & QPSK Modulation Schemes

Radhika Porwal
M. Tech. Scholar, Department of Electronics and Communication Engineering
Mahakal Institute of Technology, Ujjain (M.P.), India
E-mail: porwal.radhika@gmail.com

Prof. Gaurav Gupta
HOD, Department of Electronics and Communication Engineering
Mahakal Institute of Technology, Ujjain (M.P.), India
E-mail: gauravgupta2k3@yahoo.co.in

Abstract— Alamouti code is a simple space-time code that can be used for transmit diversity systems. This is a class of easily decoded space-time codes that achieve full diversity order in Rayleigh fading channels. Alamouti exist only for certain numbers of transmit antennas and do not provide array gain like diversity techniques that exploit transmit channel information. When channel state information (CSI) is available at the transmitter, though, precoding the space-time codeword can be used to support different numbers of transmit antennas. The proposed work in this paper involves a transmitted signal consists of a precode followed by Alamouti code. A new design criterion and a corresponding design method of precoders are proposed which shows comparison of bit error rate (BER) performance of Alamouti STBC and Precoded Alamouti in Zero Forcing and MMSE equalization techniques. The Rayleigh fading channel is used as modulation channel.

Keywords – Alamouti, BER, CSI, MMSE Precoding, Rayleigh fading, STBC, Zero Forcing.

I. INTRODUCTION

Multiple-Input multiple-output (MIMO) wireless channels have considerably higher capacities than traditional channels. Fading makes it extremely difficult for the receiver to recover the transmitted signal unless the receiver is provided with some form of diversity, i.e. replicas of the same transmitted signal with uncorrelated attenuation. In fact, diversity combining technology has been one of the most important contributors to reliable wireless communications. Consider transmit diversity by deploying multiple antennas at the base station. Moreover, in economic terms, the cost of multiple transmit antennas at the base station can be amortized over numerous mobile users. Hence transmit diversity has been identified as one of the key contributing technologies to the downlinks of 3G wireless systems such as W-CDMA and CDMA2000.

This paper analyses the full diversity condition in MIMO to achieve the better BER performance. We take Alamouti STBC to show that BER performance will improve when antenna size improved. But the cost of device improve make it practically impossible and power consumption will more for mobile device, so alternate is using same MIMO with turbo code so same will give better result, with two antenna.

Transmit Diversity

Transmit diversity improves the signal quality and achieves a higher SNR ratio at the receiver side; it involves transmitting data stream through multiple antennas and receiving by single antenna or more. Transmit diversity can effectively mitigate multipath fading effects as multiple antennas afford a receiver several observations of the same data stream. Each antenna will experience a different interference environment and if one antenna experienced a deep fade, then it is likely that another has a sufficient signal. Thus, transmit diversity can help improve the reliability of the data reception and data decoding as well. The most popular examples of these transmit diversity techniques include Alamouti code [1] and orthogonal codes and orthogonal codes proposed by Taroukh [2]. Figure 1 shows the whole system for an exemplary Nt transmit antenna system [3].
Receive Diversity

Receive diversity are widely used in wireless communication systems; it can be achieved by receiving redundant copies of the same signal. The idea behind receive diversity is that each antenna at the receive end can observe an independent copy of the same signal. Therefore the probability that all signals are in deep fade simultaneously is significantly reduced.

The paper is organized as follows: Section 2 describes the Alamouti space time coding schemes. Section 3 explains methodology, section 4 presents simulation results. The conclusions are offered in Section 5.

II. ALAMOUTI STBC

It is simple method for achieving spatial diversity with two transmit antennas. The scheme is as follows:

Consider that we have a transmission sequence, for example

\[\{ x_1, x_2, x_3, \ldots, x_n \} \]

In normal transmission, we will be sending \(x_1 \) in the first time slot, \(x_2 \) in the second time slot, \(x_3 \) and so on.

However, Alamouti [1] suggested that we group the symbols into groups of two. In the first time slot, send \(x_1 \) and \(x_2 \) from the first and second antenna. In second time slot send \(-x_2^* \) and \(x_1^* \) from the first and second antenna. In the third time slot send \(x_3 \) and \(x_4 \) from the first and second antenna. In fourth time slot, send \(-x_4^* \) and \(x_3^* \) from the first and second antenna and so on.

Notice that though we are grouping two symbols, we still need two time slots to send two symbols. Hence, there is no change in the data rate. This forms the simple explanation of the transmission scheme with Alamouti Space Time Block coding.

Alamouti scheme is an example of a full-rate full-diversity complex space–time block code.

III. METHODOLOGY

Figure 4 shows the basic block diagram for proposed system. Here rotational precoding is used which is explained as:

Rotational Precoding

The main aim of rotational precoding is to direct all the power to the sub-streams along their corresponding Eigen directions of the channel, which can be achieved by the selection of appropriate codeword from the set that minimizes the distance

\[
d(W_k, W_l) = \frac{1}{2\sqrt{2}} ||W_k W_k^H - W_l W_l^H||_F
\]

Where \(d \) is the chordal distance.

Precoded STBC

Consider the MIMO system with \(N_T \) antennas, that is \(h \in \mathbb{C}^{1 \times N_T} \). Let \(\mathbb{C} \in \mathbb{C}_M^{N_T} \) denote a space-time codeword with a length of \(M \), which is represented as:

\[
C = [c_1 c_2 \ldots c_T]
\]
Where, \(c_k = [c_{k,1}, c_{k,2}, ..., c_{k,M}]^T \)
\(k = 1, 2, ..., T \) and \(M \leq N \)

In the precoded STBC systems, the space-time codeword \(C \) is multiplied by a precoding matrix \(W \in \mathbb{C}^{N_T \times M} \), which is chosen from the codebook.

\[
F = \{W_1, W_2, W_3, ..., W_L\}
\]

The objective is to choose an appropriate codeword that improves the overall system performance such as channel capacity or error performance. Assuming that \(N_T \) channels remain static over \(T \), the received signal \(y \in \mathbb{C}^{1 \times T} \) can be expressed as,

\[
y = \sqrt{\frac{E}{N_0}} h_W C + z
\]

In above equation the length of each vector is \(M \leq N_T \). The probability of codeword error can be derived as follows: For a given channel \(h \) and precoding matrix \(W \), we consider the pair wise codeword error probability \(P_e(C_i \rightarrow C_j|H) \). The upper bound of the pair wise error probability is given as:

\[
P_e(C_i \rightarrow C_j|H) = Q\left(\frac{\rho||HWE_{i,j}|^2}{2N_T}\right) \leq \exp\left(-\frac{\rho||HWE_{i,j}|^2}{4N_T}\right)
\]

Where \(\rho \) is the signal-to-noise ratio (SNR), given as \(\rho = \frac{E_x}{N_0} \) and \(E_{i,j} \) is the error matrix between the codewords \(C_i \) and \(C_j \) which is defined as \(E_{i,j} = C_i - C_j \) for a given STBC scheme. From equation above we see that \(||HWE_{i,j}|^2 \) needs to be maximized in order to minimize the pairwise error probability.

This leads us to the following codeword selection criterion:

\[
W_{opt} = \arg \max_{W \in F, i \neq j} ||HWE_{i,j}|^2
\]

\[
= \arg \max_{W \in F} \text{Tr}(HWE_{i,j}E_{i,j}^HWH^H)
\]

\[
= \arg \max_{W \in F} \text{Tr}(HW^HWH^H)
\]

\[
W_{opt}^* = \arg \max_{W \in F} ||HW||_F^2
\]

In the course of deriving equation (7), we have used the fact that the error matrix of STBC has the property of \(E_{i,j}E_{i,j}^H = aI \) with constant \(a \). When the constraint \(W \in F \) is not imposed, the above optimum solution \(W_{opt} \) is not unique, because \(||HW_{opt}|^2 = ||HW_{opt}Z||^2 \). Where \(Z \) is a
unitary matrix. The unconstrained optimum solution of equation (7) can be obtained by singular value decomposition (SVD) of channel \(H = U \Sigma V^H \), where the diagonal entry of \(S \) is in descending order. It is shown that the optimum solution of above equation is given by the leftmost \(M \) columns of \(V \), that is,

\[
W_{opt} = [v_1 \ v_1 \ldots \ v_M] \triangleq \tilde{V}
\]

(8)

Since \(\tilde{V} \) is unitary, \(\lambda_i(W_{opt}) = 1, i = 1, 2, \ldots, M \) where \(\lambda_i(A) \) denotes the \(i \)th largest eigenvalue of the matrix \(A \).

In case that a channel is not deterministic, the following criterion is used for the codebook design:

\[
E \left\{ \min_{\tilde{W} \in \mathcal{F}} (||H\tilde{W}_{opt}||^2_F - ||H\tilde{W}||^2_F) \right\}
\]

(9)

Where the expectation is with regards to the random channel \(H \). \(W_{opt} \) in equation (9) follows from equation (8) for the given channel \(H \).

The above expected value in equation (9) is upper-bounded as:

\[
E \left\{ \min_{\tilde{W} \in \mathcal{F}} (||H\tilde{W}_{opt}||^2_F - ||H\tilde{W}||^2_F) \right\} \leq \lambda_2^2(H) E \left\{ \min_{\tilde{W} \in \mathcal{F}} (||\tilde{V}\tilde{V}^H - \tilde{W}\tilde{W}^H||^2_F) \right\}
\]

(10)

Since \(\lambda_2(H) \) is given, the codebook must be designed so as to minimize,

\[
E \left\{ \min_{\tilde{W} \in \mathcal{F}} (||\tilde{V}\tilde{V}^H - \tilde{W}\tilde{W}^H||^2_F) \right\}
\]

in equation (10).

IV. SIMULATION AND RESULTS

Simulation is carried out using MATLAB 2010a:

![Figure 6: Comparison of BER performance of Alamouti without precoding and with precoding in Zero forcing](image1)

![Figure 7: Comparison of BER performance of Alamouti without precoding and with precoding in MMSE](image2)

V. CONCLUSION

This paper is devoted to space-time block coding in order to improve the BDR performance of such wireless communication systems specifically those using multiple transmitter and receiver antennas. Simulation results shows comparison of BER performance between the Alamouti STBC and Precoded Alamouti for Zero Forcing and MMSE equalization techniques. And finally it is found that the Precoded Alamouti shows better results in terms of BER as compared to other schemes for Z-F and MMSE techniques.

REFERENCES

