
IJDACR

 ISSN: 2319-4863

International Journal of Digital Application & Contemporary research

Website: www.ijdacr.com (Volume 1, Issue 4, November 2012)

An Optimized Mapping Strategy for Parallel Image

Processing
 Vithika Goyal C. S. Lamba

 vithikagoyal@yahoo.co.in professorlamba@gmail.com

Abstract— Speed has been the most concerning part of

technical computing and image processing is one of the most

popular research topic today. This paper presents an

optimized parallel image processing over biological images

using genetic algorithm. The result is compared with

conventional parallel processing.

Keywords— Parallel processing, Genetic Algorithm, Speed,

Optimization.

I. INTRODUCTION

Parallel computing is a form of computation in which many

calculations are carried out simultaneously, operating on

the principle that large problems can often be divided into

smaller ones, which are then solved concurrently ("in

parallel"). There are several different forms of parallel

computing: bit-level, instruction level, data, and task

parallelism. Parallelism has been employed for many years,

mainly in high-performance computing, but interest in it

has grown lately due to the physical constraints

preventing frequency scaling. As power consumption (and

consequently heat generation) by computers has become a

concern in recent years, parallel computing has become the

dominant paradigm in computer architecture, mainly in the

form of multicore processors [1]. A NUMBER of parallel

computer architectures, where several processing elements

(PE's) are connected by an interconnection network, have

been proposed or built in response to the ever-growing

need for speeding up computationally intensive tasks. Most

of these architectures may be classified into two groups.

One group of architectures, called dedicated architectures,

aims at maximizing the achievable performance for a

particular task or a class of similar tasks. Usually, there

exists relatively little room for optimizing the assignment

of decomposed subtasks on the dedicated architecture, i.e.,

scheduling. The architectures of the other type, called

general-purpose architectures, are designed so that they can

provide a good average performance for a broad range of

tasks. Therefore, scheduling becomes an important problem

for this type of architectures since it has a substantial effect

on system performance and utilization [2].

Various approaches to the multiprocessor scheduling

problem have been proposed Because of the intractability

of the problem, heuristic approaches have been developed

to solve the problem. Kashara and Narita proposed a

heuristic algorithm (critical path/most immediate

successors first) and an optimization/approximation

algorithm (depth first/implicit heuristic search). Chen et al.

developed a state-space search algorithm (A *) coupled

with a heuristic derived from the Fernandez and Bussell

bound to solve the multiprocessor scheduling problem.

Hellstrom and Kanal map the multiprocessor problem into

a neural network model, asymmetric mean-field network.

In this paper, we present a genetic algorithm approach to

the multiprocessor scheduling problem [3]. The efficiency

of a parallel computing system is commonly measured by

completion time, speedup, or throughput, which in turn

reflect the quality of the scheduler. The scheduling problem

is known to be NP-complete for the general case and even

for many restricted cases. For this reason, scheduling is

usually handled by heuristic methods which provide

reasonable solutions for restricted instances of the problem.

This paper presents the optimization of scheduling for

parallel image procesing by genetic algorithm. The genetic

algorithm is discussed in section II and the proposed

methodology in section III, while section IV shown the

simulation and results.

II. GENETIC ALGORITHM

A Genetic Algorithm (GA) is a search algorithm which

is based on the principles of evolution and natural genetics

[4], [5]. It combines the exploitation of past results with the

exploration of new areas of the search space. By using

survival of the fittest techniques combined with a

structured yet randomized information exchange, a GA can

mimic some of the innovative flair of human search. A

generation is a collection of artificial creatures (strings). In

every new generation a set of strings is created using

information from the previous ones. Occasionally a new

part is tried for good measure. GAs are randomized, but

they are not simple random walks. They efficiently exploit

IJD
ACR

mailto:vithikagoyal@yahoo.co.in
http://en.wikipedia.org/wiki/Computing
http://en.wikipedia.org/wiki/Concurrency_(computer_science)
http://en.wikipedia.org/wiki/Bit-level_parallelism
http://en.wikipedia.org/wiki/Instruction_level_parallelism
http://en.wikipedia.org/wiki/Data_parallelism
http://en.wikipedia.org/wiki/Task_parallelism
http://en.wikipedia.org/wiki/Task_parallelism
http://en.wikipedia.org/wiki/High_performance_computing
http://en.wikipedia.org/wiki/Frequency_scaling
http://en.wikipedia.org/wiki/Computer_architecture
http://en.wikipedia.org/wiki/Multi-core_(computing)

IJDACR

 ISSN: 2319-4863

International Journal of Digital Application & Contemporary research

Website: www.ijdacr.com (Volume 1, Issue 4, November 2012)

historical information to speculate on new search points

with expected improvement. The central theme of research

on GAs has been robustness. The balance between

efficiency and efficacy is necessary for survival in many

different environments. The implications of robustness for

artificial systems are manifold. If artificial systems can be

made more robust, costly redesigns can be reduced or

eliminated. If higher levels of adaptation can be achieved,

existing systems can perform their functions longer and

better. Features for self-repair, self-guidance, and

reproduction are the rule in biological systems, whereas

they barely exist in the most sophisticated artificial

systems. Random search algorithms have achieved

increasing popularity as researchers recognize the

shortcomings of calculus-based and enumerative schemes

[6], [7]. Random walks and random schemes that search

and save the best must be discounted because of efficiency

requirements. Random searches, in the long run, can be

expected to do no better than enumerative schemes [8].

Random search methods are distinct from randomized

techniques. A GA is an example of a search procedure that

uses random choice as a tool to guide a highly exploitative

search through a coding of a parameter space. Simulated

annealing is another example that uses a random process to

guide its form of search for minimal energy states [9].

A GA starts with a pool of feasible solutions

(population) and a set of biologically inspired operators

defined over the population itself. At each iteration, a new

population of solutions is created by breeding and

mutation, with the fitter solutions being more likely to

procreate. According to evolutionary theories, only the

most suited elements in a population are likely to survive

and generate offspring, transmitting their biological

inheritance to the next generation. GAs operates through a

simple cycle of stages: creation of a population a strings,

evaluation of each string, selection of the best strings, and

reproduction to create a new population [4], [10], [11],

[12], [13]. Individuals are encoded as strings known as

chromosomes composed over an alphabet. The

chromosome values, genotypes, are uniquely mapped onto

the decision variable, phenotypic domain. The most

common representation for GAs is the binary alphabet {0;

1}. Other representations include ternary, integer, and real

valued [14]. Variables are mapped onto the chromosome.

When the chromosome is decoded into its phenotypic

values, meaning specific to the problem can be gained.

Once the chromosome has been decoded, it is possible to

evaluate the performance, or fitness, of individuals in a

population. An objective function is used to characterize an

individual's performance to the problem. This is analogous

to an individual's ability to survive in the natural world.

Thus, the objective function gives the basis for selection of

pairs of individuals that will be mated together during

reproduction. During selection, each individual is assigned

a fitness value given by the objective function. Then pairs

are selected for matting. Individual selection is biased to

fitter individuals, giving them a proportionally higher

chance of being selected. Reproduction involves two types

of genetic manipulation, namely crossover and mutation.

The simplest crossover operator is single point where

genetic information is swapped after a random position,

producing two new off springs. Mutation is another genetic

operator that is applied to all new chromosomes with a set

probability. In the binary string representation, mutation

will cause a random bit to change its state, 0 to 1 or vice

versa. Mutation can be considered a background operator

that ensures the probability of finding the optimal solution

is never zero. Mutation tends to inhibit the possibility of

converging to a local, rather than the global optimum. After

reproduction, the cycle is repeated. New individuals are

decoded and the objective function evaluated to give their

fitness values. Individuals are selected for mating

according to fitness and so the process continues. The

average performance of individuals in a population is

expected to increase as good individuals are preserved and

bred, while less fit members die out. The GA is terminated

under a given criteria, for example, a certain number of

generations have been completed, a level of fitness has

been obtained or a point in the search space has been

reached. There are several parameters to fine-tune in a GA,

such as population size and mutation frequency. These

parameters can be chosen with experience or through

experimentsit.

III. PROPOSED METHODOLOGY

Image processing has shown its importance in modern

world. It is a subject of wide research in any field of

engineering science. A common image processing task is to

apply an image processing algorithm to a series of files.

This procedure can be time consuming if the algorithm is

computationally intensive, if you are processing a large

number of files, or if the files are very large. To make

processing faster we use parallel processing.

Here we are showing the task of detecting cells in an

image. The algorithm work in steps given below:

1. Reading Image

2. Removing Noise

3. Converting to binary

4. Morphological operations

5. Marking cell area

IJD
ACR

IJDACR

 ISSN: 2319-4863

International Journal of Digital Application & Contemporary research

Website: www.ijdacr.com (Volume 1, Issue 4, November 2012)

The series of this operation is first applied to four images

sequentially.

Then all these five operations are arranged in pipelined

structure and then all four images marking one to four is

processed to that pipeline structure.

GA works on a function known as fitness function. To

optimize the our problem we set our goal in terms of time

as the mapping sequence which take minimum time to

process will be the best. The fitness function starts with

taking a random sequence of four images i.e. [3 2 4 1] then

it contains the pipelined structure of operations stated

above. So, the definition function can be given as

Min Processing Time = Function of {Sequence of Image}

IV. SIMULATION AND RESULTS

All the programs have been developed in MATLAB

R2009b using the Parallel Computing Toolbox and Genetic

Algorithm Toolbox. Simulation is performed of computer

having Intel Core i3 Processor, 2GB RAM, L2 Cache and

Windows8.

The Results are as follows:

Processing Order Of Image

Processed

Computational

Time

Sequential [1 2 3 4] 2.1549 Sec

Parallel [1 2 3 4] 1.5920 Sec

Optimized Parallel [2 1 3 4] 0.86624 Sec

IV. CONCLUSIONS

The paper provided a brief overview of GA. A

framework for using GAs to solve Mapping for Parallel

Image processing problems was proposed and the results

were shown. GAs can be employed to design new and more

generic techniques to solve scheduling problems and any

advances made in this direction can be extended to other

classes of problems that are NP-complete. Also the same

problem can be optimized using particle swarm

optimization. The results shown for only four images but

work can be loaded over the large set of images to achieve

faster speed in parallel computation.

REFERENCES

[1] Wikipedia.com

[2] SOO-YOUNG LEE and J. K. AGGARWAL, “A Mapping
Strategy for Parallel Processing” IEEE TRANSACTIONS ON

COMPUTERS, VOL. C-36, NO. 4, APRIL 1987

[3] Edwin S. H. Hou, Member, IEEE, Nirwan Ansari, Member, IEEE,

and Hong Ren, A Genetic Algorithm for Multiprocessor
Scheduling, IEEE TRANSACTIONS ON PARALLEL AND

DISTRIBUTED SYSTEMS. VOL. 5. NO.2, FEBRUARY 1994

[4] D.E. Goldberg, Genetic Algorithms in Search, Optimization, and

Machine Learning. Reading, Mass.: Addison-Wesley, 1989.

[5] J.J. Holland, Adaptation in Natural and Artificial Systems. Ann
Arbor, Mich.: Univ. of Michigan Press, 1975.

[6] R. Horst and P.M. Pardalos, Handbook of Global Optimization.

The Netherlands: Kluwer Academic Publishers, 1995.

[7] H. Ratschek and J. Rokne, New Computer Methods for Global
optimizations. Ellis-Horwood, 1988.

[8] C. Guus, E. Boender, and H.E. Romeijn, ªStochastic

Methods,Handbook of Global Optimization, R. Horst and P.M.

Pardalos, eds.,pp. 829-869. The Netherlands: Kluwer Academic
Publishers, 1995.

[9] T.M. Nabhan and A.Y. Zomaya, ªA Parallel Computing Engine for

a Class of Time Critical Processes,º IEEE Trans. Systems, Man,

and Cybernetics, part B, vol. 27, no. 25, pp. 774-786, 1997.

[10] Handbook of Genetic Algorithms, L. Davis, ed. Van Nostrand
Reinhold, 1991.

[11] Z. Michalewicz, Genetic Algorithms + Data Structures =

Evolution Programs. New York: Springer-Verlag, 1992.

[12] M. Srinivas and L.M. Patnaik, ªGenetic Algorithms: A

Survey,Computer, vol. 27, pp. 17-26, 1994.

[13] J.L. Riberio-Filho, P.C. Treleaven, and C. Alippi, ªGenetic-
Algorithm Programming Environments,º Computer, vol. 27,pp.

28-43, 1994.

[14] A.Y. Zomaya, R.C. Lee, and S. Olariu, ªSchedulers that Evolve!

Technical Report 96-PCRL-02, Parallel Computing Research
Laboratory, Dept. of Electrical and Electronic Eng., The Univ. of

Western Australia, 1996.

IJD
ACR

