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Abstract— Speed has been the most concerning part of 

technical computing and image processing is one of the most 

popular research topic today. This paper presents an 

optimized parallel image processing over biological images 

using genetic algorithm. The result is compared with 

conventional parallel processing.   
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I. INTRODUCTION 

Parallel computing is a form of computation in which many 

calculations are carried out simultaneously, operating on 

the principle that large problems can often be divided into 

smaller ones, which are then solved concurrently ("in 

parallel"). There are several different forms of parallel 

computing: bit-level, instruction level, data, and task 

parallelism. Parallelism has been employed for many years, 

mainly in high-performance computing, but interest in it 

has grown lately due to the physical constraints 

preventing frequency scaling. As power consumption (and 

consequently heat generation) by computers has become a 

concern in recent years, parallel computing has become the 

dominant paradigm in computer architecture, mainly in the 

form of multicore processors [1]. A NUMBER of parallel 

computer architectures, where several processing elements 

(PE's) are connected by an interconnection network, have 

been proposed or built in response to the ever-growing 

need for speeding up computationally intensive tasks. Most 

of these architectures may be classified into two groups. 

One group of architectures, called dedicated architectures, 

aims at maximizing the achievable performance for a 

particular task or a class of similar tasks. Usually, there 

exists relatively little room for optimizing the assignment 

of decomposed subtasks on the dedicated architecture, i.e., 

scheduling. The architectures of the other type, called 

general-purpose architectures, are designed so that they can 

provide a good average performance for a broad range of 

tasks. Therefore, scheduling becomes an important problem 

for this type of architectures since it has a substantial effect 

on system performance and utilization [2]. 

Various approaches to the multiprocessor scheduling 

problem have been proposed Because of the intractability 

of the problem, heuristic approaches have been developed 

to solve the problem. Kashara and Narita proposed a 

heuristic algorithm (critical path/most immediate 

successors first) and an optimization/approximation 

algorithm (depth first/implicit heuristic search). Chen et al. 

developed a state-space search algorithm (A *) coupled 

with a heuristic derived from the Fernandez and Bussell 

bound to solve the multiprocessor scheduling problem. 

Hellstrom and Kanal map the multiprocessor problem into 

a neural network model, asymmetric mean-field network. 

In this paper, we present a genetic algorithm approach to 

the multiprocessor scheduling problem [3]. The efficiency 

of a parallel computing system is commonly measured by 

completion time, speedup, or throughput, which in turn 

reflect the quality of the scheduler. The scheduling problem 

is known to be NP-complete for the general case and even 

for many restricted cases. For this reason, scheduling is 

usually handled by heuristic methods which provide 

reasonable solutions for restricted instances of the problem. 

This paper presents the optimization of scheduling for 

parallel image procesing by genetic algorithm. The genetic 

algorithm is discussed in section II and the proposed 

methodology in section III, while section IV shown the 

simulation and results. 

II. GENETIC ALGORITHM 

A Genetic Algorithm (GA) is a search algorithm which 

is based on the principles of evolution and natural genetics 

[4], [5]. It combines the exploitation of past results with the 

exploration of new areas of the search space. By using 

survival of the fittest techniques combined with a 

structured yet randomized information exchange, a GA can 

mimic some of the innovative flair of human search. A 

generation is a collection of artificial creatures (strings). In 

every new generation a set of strings is created using 

information from the previous ones. Occasionally a new 

part is tried for good measure. GAs are randomized, but 

they are not simple random walks. They efficiently exploit 
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historical information to speculate on new search points 

with expected improvement. The central theme of research 

on GAs has been robustness. The balance between 

efficiency and efficacy is necessary for survival in many 

different environments. The implications of robustness for 

artificial systems are manifold. If artificial systems can be 

made more robust, costly redesigns can be reduced or 

eliminated. If higher levels of adaptation can be achieved, 

existing systems can perform their functions longer and 

better. Features for self-repair, self-guidance, and 

reproduction are the rule in biological systems, whereas 

they barely exist in the most sophisticated artificial 

systems. Random search algorithms have achieved 

increasing popularity as researchers recognize the 

shortcomings of calculus-based and enumerative schemes 

[6], [7]. Random walks and random schemes that search 

and save the best must be discounted because of efficiency 

requirements. Random searches, in the long run, can be 

expected to do no better than enumerative schemes [8]. 

Random search methods are distinct from randomized 

techniques. A GA is an example of a search procedure that 

uses random choice as a tool to guide a highly exploitative 

search through a coding of a parameter space. Simulated 

annealing is another example that uses a random process to 

guide its form of search for minimal energy states [9].  

A GA starts with a pool of feasible solutions 

(population) and a set of biologically inspired operators 

defined over the population itself. At each iteration, a new 

population of solutions is created by breeding and 

mutation, with the fitter solutions being more likely to 

procreate. According to evolutionary theories, only the 

most suited elements in a population are likely to survive 

and generate offspring, transmitting their biological 

inheritance to the next generation. GAs operates through a 

simple cycle of stages: creation of a population a strings, 

evaluation of each string, selection of the best strings, and 

reproduction to create a new population [4], [10], [11], 

[12], [13]. Individuals are encoded as strings known as 

chromosomes composed over an alphabet. The 

chromosome values, genotypes, are uniquely mapped onto 

the decision variable, phenotypic domain. The most 

common representation for GAs is the binary alphabet {0; 

1}. Other representations include ternary, integer, and real 

valued [14]. Variables are mapped onto the chromosome. 

When the chromosome is decoded into its phenotypic 

values, meaning specific to the problem can be gained. 

Once the chromosome has been decoded, it is possible to 

evaluate the performance, or fitness, of individuals in a 

population. An objective function is used to characterize an 

individual's performance to the problem. This is analogous 

to an individual's ability to survive in the natural world. 

Thus, the objective function gives the basis for selection of 

pairs of individuals that will be mated together during 

reproduction. During selection, each individual is assigned 

a fitness value given by the objective function. Then pairs 

are selected for matting. Individual selection is biased to 

fitter individuals, giving them a proportionally higher 

chance of being selected. Reproduction involves two types 

of genetic manipulation, namely crossover and mutation. 

The simplest crossover operator is single point where 

genetic information is swapped after a random position, 

producing two new off springs. Mutation is another genetic 

operator that is applied to all new chromosomes with a set 

probability. In the binary string representation, mutation 

will cause a random bit to change its state, 0 to 1 or vice 

versa. Mutation can be considered a background operator 

that ensures the probability of finding the optimal solution 

is never zero. Mutation tends to inhibit the possibility of 

converging to a local, rather than the global optimum. After 

reproduction, the cycle is repeated. New individuals are 

decoded and the objective function evaluated to give their 

fitness values. Individuals are selected for mating 

according to fitness and so the process continues. The 

average performance of individuals in a population is 

expected to increase as good individuals are preserved and 

bred, while less fit members die out. The GA is terminated 

under a given criteria, for example, a certain number of 

generations have been completed, a level of fitness has 

been obtained or a point in the search space has been 

reached. There are several parameters to fine-tune in a GA, 

such as population size and mutation frequency. These 

parameters can be chosen with experience or through 

experimentsit. 

III. PROPOSED METHODOLOGY 

Image processing has shown its importance in modern 

world. It is a subject of wide research in any field of 

engineering science. A common image processing task is to 

apply an image processing algorithm to a series of files. 

This procedure can be time consuming if the algorithm is 

computationally intensive, if you are processing a large 

number of files, or if the files are very large. To make 

processing faster we use parallel processing. 

Here we are showing the task of detecting cells in an 

image. The algorithm work in steps given below:  

1. Reading Image 

2. Removing Noise 

3. Converting to binary 

4. Morphological operations 

5. Marking cell area 
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The series of this operation is first applied to four images 

sequentially. 

Then all these five operations are arranged in pipelined 

structure and then all four images marking one to four is 

processed to that pipeline structure. 

GA works on a function known as fitness function. To 

optimize the our problem we set our goal in terms of time 

as the mapping sequence which take minimum time to 

process will be the best. The fitness function starts with 

taking a random sequence of four images i.e. [3 2 4 1] then 

it contains the pipelined structure of operations stated 

above. So, the definition function can be given as 

 

Min Processing Time = Function of {Sequence of Image} 

 

IV. SIMULATION AND RESULTS 

All the programs have been developed in MATLAB 

R2009b using the Parallel Computing Toolbox and Genetic 

Algorithm Toolbox. Simulation is performed of computer 

having Intel Core i3 Processor, 2GB RAM, L2 Cache and 

Windows8. 

The Results are as follows: 

Processing Order Of Image 

Processed 

Computational 

Time 

Sequential [1 2 3 4] 2.1549 Sec 

Parallel [1 2 3 4] 1.5920 Sec 

Optimized Parallel [2 1 3 4] 0.86624 Sec 

 

IV. CONCLUSIONS 

The paper provided a brief overview of GA. A 

framework for using GAs to solve Mapping for Parallel 

Image processing problems was proposed and the results 

were shown. GAs can be employed to design new and more 

generic techniques to solve scheduling problems and any 

advances made in this direction can be extended to other 

classes of problems that are NP-complete. Also the same 

problem can be optimized using particle swarm 

optimization. The results shown for only four images but 

work can be loaded over the large set of images to achieve 

faster speed in parallel computation. 
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