
IJDACR

 ISSN: 2319-4863

International Journal of Digital Application & Contemporary Research

Website: www.ijdacr.com (Volume 4, Issue 7, February 2016)

A Novel Arbitration Technique of AMBA AHB

Pallavi Kumari Gautam

Naveen Upadhyay

Abstract – Resolution is a big issue in SOC (System on Chip)

while dealing with number of master trying to sense a single

data bus. The effectiveness of a system to resolve this

priority resides in its ability to logical assignment of the

chance to transmit data width of the data, response to the

interrupts etc. The purpose of this paper is to propose the

scheme to implement such a system using the specification

of AMBA bust protocol. The scheme involves the typical

AMBA features of ‘single clock edge transition’, ‘Split

transaction’, ‘several bus masters’ and ‘burst transfer’.

The bus arbiter ensures that only one bus master at a time

is allowed to initiate data transfers. Even though the

arbitration protocol is fixed, any arbitration algorithm,

such as highest priority or fair access can be implemented

depending on the application requirements. The design

architecture is written using VHDL (Very High Speed

Integrated Circuits Hardware Description Language) code

using Xilinx ISE Tools. The architecture is modeled and

synthesized using RTL (Register Transfer Level)

abstraction and Implemented on Virtex-2 series.

Keywords – AMBA, SOC, RTL, VHDL.

I. INTRODUCTION

Systems-on-Chip (SoC) and in particular embedded real-

time systems typically consist of several computational

elements. These elements fulfil different tasks for

processing an overall solution. Let’s take a set-top box

for TV sets as an example [1]. A set-topmost generate a

TV-signal for a particular TV channel from a digital

satellite signal. This process takes different tasks. One

task is to split the incoming digital signal into data

streams, such as video and audio. Another task is to

convert the video stream into an actual TV-signal. One

more conversion has to be made to turn the audio stream

into an audio signal for the TV set. Meanwhile, another

task handles the user input such as changing the channel

when the remote control is pressed. All these tasks have

to be done in parallel and are bound by real-time

deadlines. The cost of missing these deadlines is visible

as black boxes on the screen or audible as noise. This is

unacceptable and therefore it is necessary to always

deliver this data within hard real-time deadlines. These

computational elements are either general-purpose

processors or digital signal processors. Nowadays,

multiple of them are integrated into a System-on-Chip

solution. A processor needs to interact with other

processors, memories or I/O devices to complete a task.

Currently busses are used to interconnect these IP blocks.

The current research in the field suggests using

Networks-on-Chip (NoC) to interconnect IP blocks,

because NoCs allow more flexibility than busses [1].

With the need of application, chip with a single processor

can’t meet the need of more and more complex

computational task. We are able to integrate multiple

processors on a chip thanks to the development of

integrated circuit manufacturing technology Now as

there are multiprocessing units and processors is getting

faster, so compatibility with slow communication

architectures a bit difficult furthermore this slow and

conventional communication architecture limits the

throughput.

To improve the performance we have to develop such

efficient on chip Architecture which will be much faster

system on chip solution which removes the limitation of

communication architecture one of the solution is “AHB

bus” but it can’t give perfect parallelism as it can allow

only one master to communicate at one slave only. While

in our design there are five independent transfer channels

which make multiple masters access multiple slaves at

the same time and gain a perfect parallelism performance

in MPSOC design. The bus arbiter ensures that only one

bus master at a time is allowed to initiate data transfers.

Even though the arbitration protocol is fixed, any

arbitration algorithm, such as highest priority or fair

access can be implemented depending on the application

requirements.

AHB is a new generation of AMBA bus which

is intended to address the requirements of high-

performance synthesizable designs. It is a high

performance system bus that supports multiple bus

masters and provides high bandwidth operation.

Figure 1: AMBA AHB Block diagram

IJDACR

 ISSN: 2319-4863

International Journal of Digital Application & Contemporary Research

Website: www.ijdacr.com (Volume 4, Issue 7, February 2016)

AMBA AHB implements the features required for high

performance, high clock frequency systems including:

 Burst transfers

 Split transactions

 Single-cycle bus master handover

 Single-clock edge operation

 Non-tristate implementation

 Wider data bus configurations (64/128 bits)

In this paper, an industry-standard ARBITER is

implemented for AHB (AMBA). The specification

describes the bus attributes, the protocol definition and

types of transactions, bus management, and the

programming interface required to design.

II. PROPOSED METHODOLOGY

Arbitration to choose the next bus master uses a round

robin arbitration algorithm. This ensures that no master

gets starved. When a master has locked the bus, the round

robin arbitration is overridden and the master with the

lock retains highest priority to the bus.

Figure 2: Pin Diagram for AHB Arbiter

AHB

ARBITER

Bus_req1

Bus_req2

Hlock1

 Hlock2

 Bus_req3

Hlock3

Arbiter

requests

and

locks

Haddr[31:0]

Hsplitx[15:0]

Htrans[1:0]

Hburst[2:0]

Hresp[1:0]

hready

Hresetn

Hclk

Grant1

Grant2

Grant16

Hamster[3:0]

Hmastlock

Address

and

Control

Reset

and

Clock

Arbiter

grants

ARBITER PORTS

IJDACR

 ISSN: 2319-4863

International Journal of Digital Application & Contemporary Research

Website: www.ijdacr.com (Volume 4, Issue 7, February 2016)

Figure 3: Block diagram of Arbiter

The sixteen AMBA Bus masters are Master 0 through

Master 15. Slave 0 through Slave 15 are the sixteen

AMBA Bus slaves. The AMBA AHB Bus

Arbiter/Decoder contains a default master-Master0, and

a default slave- Slave 0.

AMBA AHB Bus Arbiter features are summarized:

 AMBA AHB Bus arbiter function

 Round robin arbitration

 Default master- Master 0

 Default slave- Slave 0

The Arbiter block monitors the AMBA Bus for requests

and chooses the master with highest priority request as

the next AMBA bus transaction master. If there are no

IJDACR

 ISSN: 2319-4863

International Journal of Digital Application & Contemporary Research

Website: www.ijdacr.com (Volume 4, Issue 7, February 2016)

requests, the Default Master is chosen as the master to

drive the next AMBA Bus transaction.

Testing the IP

The method of testing the IP was kept simple since it was

more important to concentrate on the functionality of the

IP.

The Subsystem Specifications

The AHB ARBITER IP can be broken into two

subsystems. The two major components of the system

under design are the controller and data path.

Controller

The controller is essentially a Mealy state machine. It

keeps track of the different sections of an ARBITER

transaction. The first state of the controller is the start

state. The next state to check the grant if grant is there

then it will make the necessary signal high which will

further control the counter, and counter interface block.

Data path

The Data path are further divided into several sub system

blocks, few of them are controlled by controller.

Followings are different data path with different

functionality.

1. Priority logical block

2. Priority storage block

3. Mux arrangement for grant and bus request.

4. Or gate

5. Counter

6. D-flip_flop.

For details please refer Figure 3.

Overall Description of Design
The Followings are the major steps involves in the

Arbiter designs form architectural or functional point of

view:

 The bus_request of different masters has to pass

through the bus_req block. Which is responsible

to pass the request to other logical blocks. This

block is depends upon the enable pin which is

coming from priority storage block.

 Bus_request further pass through interface

block and goes to priority logical block. The

interface block is giving the enable signal to

priority logical block and interface block is

responsible for monitor the data transaction

through data_done signal, it can assert and

deassert the enable pin depends upon the

data_done.

 This bus_req goes to the priority logic block.

this block further decide that which master

request will get the highest priority depending

upon the priority this block is generate the Grant

signal .

 This Grant signal goes to priority storage block,

encoder block and as out_put port to interact

with Master. After getting the Grant signal

Master will send Address, Burst to indicate the

type of transfer, and Slave will also send

Hready, Hresp, Hsplit.

 At the same time when master samples the

signals to the Arbiter Grant signals which are

the output of the Arbiter pass through the

mux,inside the Arbiter ,for this mux bus_master

no is select line ,which indicates that which

master is accessing the bus.

 The out_put mux then passes to the controller

block which will generate the necessary signals

for counter, i.e. the controller will control the

operation of counter.

 The grant output from the priority logic block is

Or and then sent to the priority storage block

which will store the priority and pass the enable

signal to the next priority depending upon the

grant value. And the whole operation is

repeated depends upon the transaction mode.

III. SIMULATION RESULTS

Figure 4: Pin diagram of top arbiter

Figure 5: RTL Schematic of arbiter

IJDACR

 ISSN: 2319-4863

International Journal of Digital Application & Contemporary Research

Website: www.ijdacr.com (Volume 4, Issue 7, February 2016)

Device utilization summary for arbiter:

Selected Device : 2v80cs144-6

Number of Slices : 1566
Number of Slice Flip Flops : 533

Number of 4 input LUTs : 2752

Number of bonded IOBs : 64
IOB Flip Flops : 4

Number of GCLKs : 2

Figure 6: Pin diagram of Counter Interface

Figure 7: RTL Schematic of Counter interface

Figure 8: Pin diagram of priority storage

Figure 9: RTL Schematic of priority storage

IV. CONCLUSION

The design is simulated on Modelsim 6.5 & verified

through effective test bench. The RTL is implemented on

Vertex-2 (XC2V80, CS144 package). The advantage of

this design is that we have taken care of latch formation,

as it is a FPGA implementation hence with less latch &

maximum flip-flop have enhanced our area efficiency.

Cyclic FSM (grey encoding) has been done for controller

design &we controlled power Consumption the design

can further be optimized for ASIC design

REFERENCE
[1] Kees Goossens, Om Prakash Gangwal, Jens Rover, and A.

P. Niranjan, “Interconnectand Memory Organization in

SOCs for advanced Set-Top Boxes and TV-Evolution,

Analysis, and Trends”, In JariNurmi,
HannuTenhunen,JouniIsoaho, and Axel Jantsch, editors,

Interconnect-Centric Designfor Advanced SoC and NoC,

chapter 15, pages 399–423. Kluwer, April 2004.
[2] Poletti, Francesco, Davide Bertozzi, Luca Benini, and

Alessandro Bogliolo. “Performance analysis of arbitration

policies for SoC communication architectures.” Design
Automation for Embedded Systems 8, no. 2-3, pp. 189-210,

2003.

[3] Huang, Yu-Jung, Yu-Hung Chen, Chien-Kai Yang, and
Shih-Jhe Lin. “Design and implementation of a

reconfigurable arbiter”, In 7th WSEAS International

conference on signal, speech and image processing
(SSIP’07), Beijing, China. 2007.

[4] Shanthi, D., and R. Amutha, “Design Approach to

Implementation Of Arbitration Algorithm In Shared Bus
Architectures (MPSoC)”, Computer Engineering and

Intelligent Systems 2, no. 4, pp. 185-196, 2011.

[5] E. Raja, K.V. Ramana, “Implementation of Multilayer AHB
Bus matrix for ARM”, International Journal of Soft

Computing and Engineering (IJSCE) ISSN: 2231-2307,

Volume-1, Issue-5, November 2011.
[6] Dr. Fazal Noorbasha, B. Srinivas, Venkata Aravind

Bezawada, V. Sai Praveen, “Implementation of an

Adaptive-Dynamic Arbitration Scheme for the Multilayer
AHB Busmatrix”, International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622, Vol.

2, Issue 4, pp.825-831, July-August 2012.
[7] Jalle, Javier, Jaume Abella, Eduardo Quinones, Luca

Fossati, Marco Zulianello, and Francisco J. Cazorla.

“AHRB: A high-performance time-composable AMBA
AHB bus.” IEEE 20th Symposium in Real-Time and

IJDACR

 ISSN: 2319-4863

International Journal of Digital Application & Contemporary Research

Website: www.ijdacr.com (Volume 4, Issue 7, February 2016)

Embedded Technology and Applications (RTAS), , pp. 225-
236, 2014.

[8] Shraddha Divekar, Archana Tiwari, “Multichannel AMBA

ARB with Multiple Arbitration Technique”, IEEE,
International Conference on Communication and Signal

Processing, April 3-5, pp. 1854-1858, 2014.

[9] Pravin S. Shete, Dr. Shruti Oza, “Design of an AMBA AHB
Reconfigurable Arbiter for On-chip Bus Architecture”,

International Journal of Application or Innovation in

Engineering & Management (IJAIEM), ISSN 2319 – 4847,
Vol. 3, Issue 5, May 2014.

[10] Shashidhar R., Sujay S. N., Pavan G. S., “Implementation

of Bus Arbiter Using Round Robin Scheme”, International
Journal of Innovative Research in Science, Engineering and

Technology, ISSN: 2319-8753, Vol. 3, Issue 7, July 2014.

[11] Mrs. R. Ramya, Ms. Preethi Vadivel, “Slave-Side
Arbitration and Implementation For Multilayer - AHB Bus

Matrix”, International Journal of Engineering Research and

Reviews, ISSN 2348-697X, Vol. 2, Issue 3, pp: 56-60,
September 2014.

[12] “AMBA AXI Protocol specification”.

www.arm.com/armtech/AXI

