
IJDACR

 ISSN: 2319-4863

International Journal of Digital Application & Contemporary research

Website: www.ijdacr.com (Volume 3, Issue 3, October 2014)

An Efficient AXI Read and Write Channel for Memory

Interface in System-on-Chip

Abhinav Tiwari

M. Tech. Scholar, Embedded System and

VLSI Design

Acropolis Institute of Technology and

Research, Indore (India)
tiwari.abhinav21@gmail.com

Jagdish Nagar

Asst. Professor,

Acropolis Institute of Technology and

Research, Indore (India)

jagdishnagar@acropolis.in

Abstract –System-on-a-Chip (SoC) design has become

more and more complexly. Because difference

functions components or IPs (Intellectual Property)

will be integrated within a chip. The challenge of

integration is “how to verify on-chip communication

properties”. Although traditional simulation-based

on-chip bus protocol checking bus signals to obey bus

transaction behaviour or not, however, they are still

lack of a chip-level dynamic verification to assist

hardware debugging. This paper proposes an efficient

AXI read and write channel for memory interface in

SOC.

Keywords –Intellectual Property, SoC, AXI.

I. INTRODUCTION

With the need of application, chip with a single

processor can’t meet the need of more and more

complex computational task. We are able to

integrate multiple processors on a chip thanks to the

development of integrated circuit manufacturing

technology Now as there are multiprocessing units

and processors is getting faster, so compatibility

with slow communication architectures a bit

difficult furthermore this slow and conventional

communication architecture limits the throughput.

To improve the performance we have to

develop such efficient on chip Architecture which

will be much faster system on-chip solution which

removes the limitation of communication

architecture. One of the solution is “AHB bus” but it

can’t give perfect parallelism as it can allow only

one master to communicate at one slave only. While

in our design there are five independent transfer

channels which make multiple masters access

multiple slaves at the same time and gain a perfect

parallelism performance in MPSOC design

The AMBA AXI protocol is targeted at

high-performance, high-frequency system designs

and includes a number of features that make it

suitable for a high-speed submicron interconnect.

The objectives of the latest generation AMBA

interface are to be suitable for high-bandwidth and

low-latency designs Enable High Frequency

operation using complex bridges meet the interface

requirements of a wide range of components be

suitable for memory controllers with high initial

access latency provide flexibility in the

implementation of interconnect architectures be

backward-compatible with existing AHB and APB

interfaces. The key features of the AXI protocol are:

 Separate address/control and data phases.

 Support for unaligned data transfers using

byte strobes.

 Burst-based transactions with only start

address issued.

 Separate read and write data channels to

enable low-cost Direct Memory Access

(DMA) ability to issue multiple

outstanding addresses.

 Out-of-order transaction completion.

 Easy addition of register stages to provide

timing closure.

II. LITERATURE SURVEY

Previous method describes the implementation of

AXI compliant DDR3 memory controller. It

discusses the overall architecture of the DDR3

controller along with the detailed design and

operation of its individual sub blocks, the pipelining

implemented in the design to increase the design

throughput. It has discusses the advantage of DDR3

memories over DDR2 memories and the AXI

protocol operation it has also included combining

and reordering the Read/Write commands. For

attaining the maximum throughput from the

memory, it operates all the memory banks in parallel

and minimizes the effect of pre-charge/refresh and

other DDR3 internal operation [1] before these

paper describes the SoC platform and the bus

encoding architecture [2].

In [3] method focuses on design and

implementation of AXI bus protocol-based MPSoC

architecture. The performance of MPSoC is

determined not only by the capacity of processor,

mailto:tiwari.abhinav21@gmail.com
mailto:jagdishnagar@acropolis.in

IJDACR

 ISSN: 2319-4863

International Journal of Digital Application & Contemporary research

Website: www.ijdacr.com (Volume 3, Issue 3, October 2014)

but also by on-chip communication architecture [4]

[5]. Now the speed of processor is becoming higher

and higher, the performance is mainly limited by the

communication architecture. However, the

significantly increased design complexity of the

MPSoC system causes the unacceptable simulation

time with the traditional simulation methods. Hence,

in [2], it was necessary to develop an FPGA

prototype, which can provide accurate performance

evaluation under real application and prediction for

future ASIC design. In [2] focuses on the design and

implement of AXI bus based MPSoC prototype,

which translates data in burst, maximal length of

which is up to 16 transactions. Besides, it only needs

to translate the head address of the burst in this

transaction. Owing to that feature, multiple masters

accessing multiple slaves at one time becomes

possible in sharing address bus architecture.

In [6] VIPACES (Verification Interface Primitives

for the development of AXI Compliant Elements

and Systems) was presented, a simple environment

for the verification of AMBA 3 AXI systems in

Verification IP (VIP) production. The elements

come from the necessity of creating generic

modules, in the verification phase, for this widely

used protocol. These primitives are presented as a

not compiled library written in SystemC where

interfaces are the core of the library. The definition

of interfaces instead of generic modules let the user

construct custom modules improving the resources

spent during the verification phase as well as easily

adapting his own modules to the AMBA 3 AXI

protocol.

In [7] a new methodology flow which will

allow the visual definition of a complex SoC through

instantiation of parametric were proposed Script

based automation helps in integrating any IP with

any configurations, selects relevant and

corresponding Verification IPs (in-house

developed-if Design IPs are standard) , uses suitable

Bus

rappers(OCP,EBI,Avalon,MicroBlaze,PicoBlaze,PI

F,AXI,AHB,APB,Generic and others) and stitches

all the components design as well

verification(synthesizable testbench components)

together and making use of TLMs, BFM (replacing

CPUs with Master BFMs) or Process Core based

designs creates an CSOC environment. The

framework reduces the time to build integration and

verify the functionality-it also has the complete set

up from assembler to DFT. The main perspective of

the complete CSOC system is that it not only

integrates various designs IPs but also integrates

corresponding inbuilt standard VIPs (Verification

IPs) that are needed to verify a SoC in real life.

These VIPs sit on the same bus that is inside the SoC

and share the bus with various Design IPs.

In [8], the method for application-specific

low-power bus architecture synthesis at system-

level were presented. This paper has two

contributions. First, this build a bus power model of

AMBA AXI bus communication architecture.

Second, is power model into a low-power

architecture exploration algorithm were

incorporated that enables system designers to

rapidly explore the target bus architecture. The

proposed exploration algorithm reduces power

consumption.

The improvement of the process technology has

enabled more and more functionality to be

integrated into a single chip, which has increased the

amount of on-chip communication between the

integrated components. In a highly integrated

system, the on-chip communication architecture

becomes a critical factor affecting overall system

performance and power consumption [9]. Designers

therefore must give special emphasis on the

choosing and optimizing of the on-chip

communication architecture early in the design flow,

preferably at the system level. The on-chip

communication architecture, such as the bus matrix

[5], has customizable topologies and parameters,

which create a vast exploration space [10]. Different

configurations in this space may have various power

budgets and performance characteristics. Hence, it is

crucial to find the rapid exploration technique which

minimizes the power consumption of the target bus

architecture under the given performance

constraints, especially for mobile devices that have

a limited energy budget.

III. ARCHITECTURE OF AXI PROTOCOL

The AXI protocol is burst-based. Every transaction

has address and control information on the address

channel that describes the nature of the data to be

transferred. The data is transferred between master

and slave using a write data channel to the slave or a

read data channel to the master. In write

transactions, in which all the data flows from the

master to the slave, the AXI protocol has an

additional write response channel to allow the slave

to signal to the master the completion of the write

transaction The AXI protocol enables Address

information to be issued ahead of the actual data

transfer Support for multiple outstanding

transactions Support for out-of-order completion of

transactions.

IJDACR

 ISSN: 2319-4863

International Journal of Digital Application & Contemporary research

Website: www.ijdacr.com (Volume 3, Issue 3, October 2014)

Figure 1: Write Address Channel

Figure 2: Read Address Channel

Research Specification

The AMBA AXI protocol is targeted at high-

performance, high-frequency system designs and

Includes a number of features that make it suitable

for a high-speed submicron interconnect. The

objectives of the latest generation AMBA interface

are to:

1) Be suitable for high-bandwidth and low-

latency designs.

2) Enable high-frequency operation without

using complex bridges.

3) Meet the interface requirements of a wide

range of components.

4) Be suitable for memory controllers with

high initial access latency.

5) Provide flexibility in the implementation of

interconnect architectures.

6) Be backward-compatible with existing

AHB and APB interfaces.

The key features of the AXI protocol are:

1) Separate address/control and data phases.

2) Support for unaligned data transfers using

byte strobes.

3) Burst-based transactions with only start

address issued.

4) Separate read and write data channels to

enable low-cost Direct Memory Access

(DMA).

5) Ability to issue multiple outstanding

addresses.

6) Out-of-order transaction completion.

7) Easy addition of register stages to provide

timing closure.

8) Support for burst lengths up to 256 beats.

9) QUALITY of Service (QoS) signaling.

10) Support for multiple region interfaces.

11) Updated write response requirements.

12) Updated AWCACHE and ARCACHE

signaling details.

13) Additional information on ordering

requirements.

14) Details of optional User signaling.

15) Removal of locked transactions.

16) Removal of write interleaving.

Each of the five independent channels consists of a

set of information signals and uses a two-way

VALID and READY handshake mechanism. The

information source uses the VALID signal to show

when valid data or control information is available

on the channel. The destination uses the READY

signal to show when it can accept the data. Both the

read data channel and the write data channel also

include a LAST signal to indicate when the transfer

of the final data item within a transaction takes

place. Read and write transactions each have their

own address channel. The appropriate address

channel carries all of the required address and

control information for a transaction. The AXI

protocol supports the following mechanisms like

variable-length bursts, from 1 to 16 data transfers

per burst, bursts with a transfer size of 8-1024 bits,

wrapping, incrementing, and non-incrementing

bursts.

The read data channel conveys both the read data

and any read response information from the slave

back to the master. The read data channel includes-

the data bus, that can be 8, 16, 32, 64, 128, 256, 512,

or 1024 bits wide a read response indicating the

completion status of the read transaction. The write

data channel conveys the write data from the master

to the slave and includes- the data bus that can be 8,

16, 32, 64, 128, 256, 512, or 1024 bits wide, one byte

lane strobe for every eight data bits, indicating

which bytes of the data bus are valid. Write data

channel information is always treated as buffered, so

that the master can perform write transactions

without slave acknowledgement of previous write

transactions. The write response channel provides a

way for the slave to respond to write transactions.

All write transactions use completion signaling. The

completion signal occurs once for each burst, not for

each individual data transfer within the burst.

IJDACR

 ISSN: 2319-4863

International Journal of Digital Application & Contemporary research

Website: www.ijdacr.com (Volume 3, Issue 3, October 2014)

Channel Definition

Each of the five independent channels consists of a

set of information signals and uses a two way

VALID and READY handshake mechanism. The

information source uses the VALID signal to show

when valid data or control information is available

on the channel. The destination uses the READY

signal to show when it can accept the data. Both the

read data channel and the write data channel also

include a LAST signal to indicate when the transfer

of the final data item within a transaction takes

place.

Read and write address channels. Read and write

transactions each have their own address channel.

The appropriate address channel carries all of the

required address and control information for a

transaction. The AXI protocol supports the

following mechanisms:

 Variable-length bursts, from 1 to 16 data

transfers per burst.

 Bursts with a transfer size of 8-1024 bits.

 Wrapping, incrementing, and non-

incrementing bursts

 Atomic operations, using exclusive or

locked accesses.

 System-level caching and buffering control

 Secure and privileged access.

Read Data Channel

The read data channel conveys both the read data

and any read response information from the slave

back to the master. The read data channel includes:

 The data bus that can be 8, 16, 32, 64, 128,

256, 512, or 1024 bits wide.

 A read response indicating the completion

status of the read transaction.

Write Data Channel

The write data channel conveys the write data from

the master to the slave and includes:

 The data bus that can be 8, 16, 32, 64, 128,

256, 512, or 1024 bits wide

 One byte lane strobe for every eight data

bits, indicating which bytes of the data bus

are valid.

Write data channel information is always treated as

buffered, so that the master can perform write

transactions without slave acknowledgement of

previous write transactions.

Write Response Channel
The write response channel provides a way for the

slave to respond to write transactions. All write

transactions use completion signaling. The

completion signal occurs once for each burst, not for

each individual data transfer within the burst.

IV. SIMULATION AND RESULTS

Figure 3: Pin diagram of address generation block

Figure 4: RTL Schematic of address generation block

Figure 5: Pin diagram of write address channel

IJDACR

 ISSN: 2319-4863

International Journal of Digital Application & Contemporary research

Website: www.ijdacr.com (Volume 3, Issue 3, October 2014)

Figure 6: RTL Schematic of write address channel

Figure 7: Pin diagram of write data channel

Figure 8: RTL Schematic of write data channel

Figure 9: Device utilization summary

V. CONCLUSION

AMBA AXI bus specification and a technology

independent methodology for designing of IP Core

Read and Write operation is satisfied. In this paper,

data transactions were carried out using AMBA AXI

protocol for read and write channel for memory

interface in System-on-Chip, which is modelled in

VHDL using Xilinx tool.

REFERENCE
[1] Vijaykumar, R K Karunavathi, Vijay Prakash,

“Design of Low Power Double Data Rate 3 Memory

Controller with AXI compliant”, International Journal

of Engineering and Advanced Technology (IJEAT),
ISSN: 2249 – 8958, Volume 1, Issue 5, June 2012.

[2] Osborne, S., Erdogan, A.T. Arslan, T., Robinson, D.,

“Bus encoding architecture for low- power
implementation of an AMBA-based SoC platform”,

IEEE Proceedings on Computers and Digital

Techniques, Vol. 149, Issue 4, July 2002.
[3] Fu-ming Xiao, Dong-sheng Li, Gao-Ming Du, Yu-kun

Song, “Design of AXI bus based MPSoC on FPGA”,

3rd International Conference on Anti-counterfeiting,

IJDACR

 ISSN: 2319-4863

International Journal of Digital Application & Contemporary research

Website: www.ijdacr.com (Volume 3, Issue 3, October 2014)

Security, and Identification in Communication

(ASID), 2009.
[4] Terry Tao Ye, Luca Benini, Giovanni De Micheli,

“Packetized On-Chip Interconnect Communication

Analysis for MPSoC”, Proceedings of Design
Automation and Test in Europe, 2003.

[5] Sudeep Pasricha, Nikil Dutt, “On-Chip

Communication Architectures: System on Chip
Interconnect”, Morgan Kaufmann, 2010.

[6] Sánchez-Peña, A., Carballo, P. P., García, L., &

Núñez, A., “VIPACES, Verification Interface
Primitives for the Development of AXI Compliant

Elements and Systems”, IEEE 9th EUROMICRO

Conference on Digital System Design: Architectures,
Methods and Tools, 2006.

[7] Ashwin K. Kumaraswamy , V. A. Chouliaras , T. R.

Jacobs, J. L. Nunez-yanez, “System-on-Chip Design

Framework (SDF) unifying Specification Capture and

Design Modeling”, In Proceedings of the 2005

Electronic Design Processes (EDP) Workshop, pp. 6-
8, April.

[8] Na, Sangkwon, Giwon Kim, and Chong-Min Kyung,

“Lifetime maximization of video blackbox
surveillance camera”, IEEE International Conference

on Multimedia and Expo (ICME), 2011.

[9] Na, S., Yang, S., & Kyung, C. M., “Low-power bus
architecture composition for AMBA AXI”, Journal of

Semiconductor Technology and Science, Vol. 9, Issue

2, 2009.
[10] S. Pasricha, N. Dutt, M. Ben-Romdhane, “Constraint-

Driven Bus Matrix Synthesis for MPSoC”, ASPDAC

2006.

