
IJDACR

 ISSN: 2319-4863

International Journal of Digital Application & Contemporary Research

Website: www.ijdacr.com (Volume 10, Issue 06, January 2022)

An Area Efficient Hierarchical Carry Save Algorithm

(HCSA) using VHDL

Krishan Kumar Safi

kkrishan040@gmail.com

Ankit Pandit

panditankit48@gmail.com

Ashish Chouhan

ashish.chouhan87@gmail.com

Abstract: The carry-save adder diverts the carry

towards LSB of partial product and in order to

decrease the final bits of the adder, CSA generates

LSBs. This helps in implementing the pipeline

approach which in turn improves the performance. In

this proposed scheme the main motive is to remove the

independent accumulate stage which creates a huge

delay and merge it with the partial product’s

compression stage. This paper proposed a Hybrid

carry-save algorithm for a 32-bit adder with optimized

area and speed. The proposed system is developed in

VHDL and synthesized in Xilinx.

Keywords: CSA, LSB, VHDL, XILINX, etc.

I. INTRODUCTION

The use of FPGAs has spread very strongly to new

fields of application, such as high performance

computing, financial computing, cryptography, etc.

These new applications require a much higher

precision than those implemented in traditional DSP

blocks. In addition to the representations in fixed

point or floating point, it is common to find

implementations today in FPGAs that use floating

point representations with double precision or

representations in decimal floating point. In these

cases operand sizes of 54 bits and larger are used.

The implementation of arithmetic operations with

large operands increases the critical path of the

signals in the adders when the carry chain

implemented by the CPA adders in the FPGAs is

used, which reduces the performance. In the

implementation of ASIC, redundant arithmetic,

especially carry-save, has been used to increase

performance for large operands, or a large number

of operands. The arithmetic carry-save allows the

critical path traveled by the signals in the adders to

be practically independent of the operand size.

The use of the carry-save representation in FPGAs

was discarded until a few years ago due to several

reasons. First of all because of the small size of

operands that were used in typical FPGA

applications. Secondly, the propagated carry adders

(CPA) that they had at the factory offered good

performance because the logic of the carry chain had

been optimized. Finally, the excessive consumption

of area by the synthesis tools when mapping units

that work in carry-save. However, in recent years,

several works have shown the benefits in the

performance, the use of carrysave adders, when the

size of the operands grows and it is also possible to

efficiently map the carry-save adders in real FPGAs

with a very small area increase [1].

Therefore, it is worth studying the implementation

of adders and multipliers in FPGAs using redundant

arithmetic in special arithmetic carry-save, since it is

a technique widely used to improve the performance

of the adders in the implementations in dedicated

ASIC circuits.

II. CARRY SAVE ADDER

The redundant representation of numbers is used to

reduce the summing time, limiting the path of the

carry chain to several bits. In this way the time used

for the realization of the sum does not depend on the

number of bits of the operands. The most common

representations are carry-save (CSA) and signed-

digit (SD). The carry-save arithmetic is widely used

when it is required to add a high number of operands.

All the adders previously seen, except the CPA, are

designed to accelerate the hauling process and

alleviate the delay in obtaining the result of the sum.

That is, their design allowed them to work in parallel

internally. The adder with carry storage or Carry

Save Adder (CSA) follows a different philosophy. It

does not aim to achieve sums using parallel internal

operations, but to be the parallel processing unit for

more complex arithmetic circuits. In this line, it

cannot be considered that the CSA [2] is an adder

circuit by itself, since it is unable to return a sum

word and an output carry bit in response to the sum

of two operands and an input carry.

Therefore, it is neither a complete adder nor a half

adder. The Carry Save Adder has three words of

input and two words of output. One of the answers

is the sum of each of the i-th bits of the three

operands separately. While the other is composed of

each of the carry bits generated in those sums. To

obtain the complete result, the word of partial sum

has to be combined with the word of carry associated

mailto:kkrishan040@gmail.com
mailto:panditankit48@gmail.com
mailto:ashish.chouhan87@gmail.com

IJDACR

 ISSN: 2319-4863

International Journal of Digital Application & Contemporary Research

Website: www.ijdacr.com (Volume 10, Issue 06, January 2022)

to said sum, spreading the produced carries. This last

operation is carried out in an adder with carry

propagation. As stated above, this type of adder is

used in special cases. It is used when you want to

add more than two operands (a method widely used

in multiplier circuits), since they allow you to delay

the haul operation until the end. Thus, its usefulness

will not be seen clearly until it explains the

acceleration of multiplication [3].

The redundant representation of numbers is used to

reduce the summing time, limiting the path of the

carry chain to several bits. In this way the time used

for the realization of the sum does not depend on the

number of bits of the operands. The most common

representations are carry-save (CS) and signed-digit

(SD). The arithmetic carry-save (CSA) is widely

used when it is required to add a high number of

operands and in the internal operations of the

multipliers [4].

The basic CSA adder performs the sum of three

operands using an array of full one-bit adders, but

without connecting the carry string, as shown in

Figure 1. The result is a redundant number in CS

representation that is composed of a sum word (S)

and carry word (C).

Figure 1 Sum-carry-save of m bits

Therefore, the sum of three operands X, Y, Z of n-

bits is represented by two numbers C and S.

X + Y + Z = C + S (1)

The numbers C and S of n-bits are obtained without

propagation of carry with the delay of a single full

adder. This representation is called redundant, since

many combinations of C and S produce the same

number. In Figure 1, by way of example, it can be

seen that adding two different numbers that give the

same result in conventional arithmetic produce two

different combinations of C and S. Therefore, until

the sum C and S are not made you will have a

number in the conventional representation. For this

it will be necessary to use a conventional adder that

adds two operands and results in a single number.

While all operations are performed in CSA

arithmetic, it is not necessary to perform the

conversion. It is also possible to perform the

conversion "on-the-fly" [5,6], although it increases

the consumption of resources since it is necessary to

perform a parallel computation.

This circuit CS from another point of view makes

the reduction of three binary numbers to two binary

numbers, so it is called compressor [3: 2] or counter

[3: 2]. If you want to add two CS numbers you need

a reduction of 4 to 2. This can be done using two

compressors [3: 2] as shown in Figure 2. This circuit

is called a compressor [4: 2]. In this case, the

computation time for two numbers of n digits CS is

that of two complete adders. Note how the carry

propagation is cut since the propagated carry of the

first level is connected to the input of the full adder

of the second level of the next weight bit.

Figure 2: A [4:2] Compressor constructed from two [3:2]

compressors [7]

Finally, comment that you can add m operands of

one bit and produce a word of sum S and another

word of carry C. In this way you have compressors

[5:2] that perform a reduction of five bits to two,

compressors [6:2] that performs a reduction of 6 bits

of input to two and in general compressors [p: t] that

performs the sum of p input bits and produces an

output of t bits.

One of the disadvantages of the CS representation is

that the number of bits involved in the sum is double.

To reduce the hardware an alternative is the use of a

higher radix, which will be one of the options

proposed in the literature and will also be proposed

as one of the implementation alternatives that will be

shown in this work, for optimization in FPGAs.

The use of the CS representation is especially useful

in algorithms that require many intermediate sums

since all the sums can be carried out in CS

representation and where the conversion to

conventional representation does not consume the

IJDACR

 ISSN: 2319-4863

International Journal of Digital Application & Contemporary Research

Website: www.ijdacr.com (Volume 10, Issue 06, January 2022)

time saved in the CS representation. This is the case

of accumulation operations, sum of multioperand,

multiplication, division, square root, etc.

CS arithmetic is usually used for the sum of

multioperands, especially in multipliers, because the

sum of the partial products must be performed [4,5].

To carry it out, compressor shafts are created (not to

be confused with compressors as a circuit) that

generate the output in arithmetic redundant CS. The

sum S and the carry C are finally added to produce a

conventional output.

The rest of the work is centered on the carry-save

adders, since the extension to the signed-digit

representation can easily be achieved by inverting

certain inputs and outputs in the compressors, as

demonstrated in [8].

One of the disadvantages of the CS representation is

that the number of bits involved in the sum is double.

To reduce hardware an alternative is the use of a

superior radix, as proposed by [9], for optimization

in FPGAs.

The use of the CS representation is especially useful

in algorithms that require many intermediate sums

since all the sums can be carried out in CS

representation and where the conversion to

conventional representation does not consume the

time saved in the CS representation. For example, in

operations of convolution, accumulation, sum of

multioperand, multiplication, division, square root,

etc.

III. HIERARCHICAL CARRY SAVE ALGORITHM (HCSA)

Figure 3: Hierarchical Carry save algorithm

From figure 3 above block diagram explains the

hierarchical implementation of carry save algorithm

operand bits are spliced into singe bit, then two bit,

three bit and so on according to their data size .for

an example if the data set is 4 bit then at the start

single bit full adder is considered with carry ‘0’ and

carry ‘1’ for second bit of operand A and B. The

outcome of this full adder (CSA) is sampled to

multiplexer the selection of multiplexer will be

decided with the addition of first bit (LSB) of

operand A and B. The outcome after Mux is further

given to next 2 bit full adder ,and again the outcome

of these fu2 bit full adder given to next 4 bit full

adder, hence according to data size it keep on

making hierarchy.

IV. SIMULATION RESULTS

Figure 4: Pin diagram for HCSA adder

a(1)+b(1)+0 a(1)+b(1)+1

 MX a(0)+b(0)
C

 A(1,0)+B(1,0)

a(3,2)+b(3,2)+1 a(3,2)+b(3,2)+0

 MX

 a(3,0)+b(3,0)

C

C

…

…

IJDACR

 ISSN: 2319-4863

International Journal of Digital Application & Contemporary Research

Website: www.ijdacr.com (Volume 10, Issue 06, January 2022)

Figure 5: RTL schematic for HCSA adder

Figure 6: Area optimization optimized modified adder

Figure 7: Time comparison modified adder

Figure 8: Pin diagram for CSA adder

Figure 9: Simulation waveform for carry save adder

Figure 10: Simulation waveform for HA32

0

100

200

4 bit 8 bit 16 bit 32 bit

Area compariosion

No of slice No of LUT No of flipflops

0

2

4

4 bit 8 bit 16 bit 32 bit

Time comparison

Minimum Period

IJDACR

 ISSN: 2319-4863

International Journal of Digital Application & Contemporary Research

Website: www.ijdacr.com (Volume 10, Issue 06, January 2022)

Table 1: Device utilization summary

Device

utilization

summary

32 bit CLA

Adder[10]

32 bit

RCA

Adder

32 bit

CSA

Adder

Number of

slices

110 123 105

Number of

LUT Flip

Flop pairs

used

192 195 195

Number of

bonded

IOBs:

227 238 153

Time 23.47 ns 26.43

ns

14.34

ns

Table 2: Device utilization summary

Device utilization

summary

32 bit

HCSA

Adder

32 bit

CSA

Adder

Number of slices 94 105

Number of LUT

Flip Flop pairs used

96 195

Number of bonded

IOBs:

148 153

Time 3.65 ns 14.34 ns

Table 1 and table 2 demonstrate the slice used in 32

bit adder architecture where CLA consumes 110

slice ,RCA has maximum number of slice

consumption that is 123.CSA architecture consumes

lesser then RCA and CLA which is 105.The

proposed structure gives better results in terms of

slice consumption in given FPGA resource i.e. 94.

V. CONCLUSION

Proposed hybrid Adder claims lesser area as

compared with different types of adders are explored

in this chapter. RCA, CSA, CLA The outcome of

hierarchal CSA based adder has given better area

and speed then traditional CSA. Minimum Number

of slices 105 is achieve as compared with other

architecture. The proposed work can be used in

multiplier and MAC architecture in future work.

REFERENCE
[1] Javali, R. A., Nayak, R. J., Mhetar, A. M., & Lakkannavar,

M. C. (2014, November). Design of high speed carry save

adder using carry lookahead adder. In International

Conference on Circuits, Communication, Control and
Computing (pp. 33-36). IEEE.

[2] Singh, R. P. P., Kumar, P., & Singh, B. (2009).
Performance analysis of 32-bit array multiplier with a carry

save adder and with a carry-look-ahead

adder. International Journal of Recent Trends in
Engineering, 2(6), 83.

[3] Erniyazov, S., & Jeon, J. C. (2019). Carry save adder and

carry look ahead adder using inverter chain based coplanar
QCA full adder for low energy

dissipation. Microelectronic Engineering, 211, 37-43.

[4] Vamsi, A. K., Kumar, N. U., Sindhuri, K. B., & Teja, G. S.
C. (2018, December). A systematic delay and power

dominant carry save adder design. In 2018 International

Conference on Smart Systems and Inventive Technology
(ICSSIT) (pp. 359-362). IEEE.

[5] Priyadarshini, K. M., Ravindran, R. E., & Nanda, I. (2020).

A novel two level edge activated carry save adder for high

speed processors. International Journal of Advanced

Computer Science and Applications, 11(4), 487-493.

[6] Mendez, T., & Nayak, S. G. (2022). Design and Analysis
of an Iterative Carry Save Adder-based Power-Efficient

Multiplier. Iranian Journal of Electrical and Electronic

Engineering, 18(1), 2238-2238.
[7] Hameed, A. S., & Kathem, M. J. (2021). High speed

modified carry save adder using a structure of

multiplexers. International Journal of Electrical and
Computer Engineering, 11(2), 1591.

[8] Javali, R. A., Nayak, R. J., Mhetar, A. M., & Lakkannavar,

M. C. (2014, November). Design of high speed carry save
adder using carry lookahead adder. In International

Conference on Circuits, Communication, Control and

Computing (pp. 33-36). IEEE.
[9] Bennet, B., & Maflin, S. (2015, March). Modified energy

efficient carry save adder. In 2015 International

Conference on Circuits, Power and Computing
Technologies [ICCPCT-2015] (pp. 1-4). IEEE.

[10] Mitra, A., Bakshi, A., Sharma, B., & Didwania, N. (2015).

Design of a High Speed Adder. International Journal of

Scientific & Engineering Research, 6(4), 918-921.

