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Abstract –The requirement for high data rates in 

current wireless communication systems has led to the 

large deployment of OFDM technique in 4G LTE 

networks and is anticipated to continue in future 5G 

and 6G networks. Although there are many benefits of 

the OFDM, the Peak-to-Average Power Ratio (PAPR) 

problem is a severe drawback to OFDM. High PAPR 

causes inefficiency of power amplifiers, signal 

distortion, spectral regrowth that degrades the 

performance of system. The most popular ones are 

through Clipping and Filtering, Partial Transmit 

Sequence (PTS), and more recently, Selected Mapping 

(SLM). But they frequently encounter trade-offs in 

signal quality, computational complexity, and 

performance efficiency. Due to these constraints, 

adaptive and efficient methods are in demand for 

PAPR mitigation in OFDM systems, and machine 

learning (ML) has emerged as a promising approach. 

In this work, a theoretical overview of Machine 

Learning-based methods applied to PAPR mitigation 

is provided, and several neural network models 

including Artificial Neural Networks (ANN), Deep 

Neural Network (DNN), and Reinforcement Learning 

(RL) are discussed based on their benefits and 

limitations. The paper also discusses future avenues 

for research on hybrid models, federated learning, 

and real-time optimization techniques for 5G and 

beyond. ML can be utilized to further augment PAPR 

reduction, leading to advanced versatile and adaptive 

communication systems in emerging wireless 

technologies. 
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I. INTRODUCTION 

Wireless communications technology has advanced 

dramatically over the last several decades to support 

rising demands for higher data rates, enhanced 

reliability, and better user experience. OFDM has 

gained prominence as the most widely used 

modulation scheme of modern and future wireless 

systems. The importance of OFDM in modern 

communication has been made evident through its 

adoption by standards including 4G LTE as well as 

its anticipated use in 5G and beyond [1]. 

Nevertheless, OFDM indeed comes with many 

advantages, but also its own challenges. Peak-to-

Average Power Ratio (PAPR) is one of the major 

problems of OFDM systems that have been 

extensively studied through both academia and 

industry 2. 

PAPR is an important observable in evaluating 

performance, which is defined as the ratio of the 

peak power of a transmitted signal to the average 

power. In OFDM systems with high PAPR, the 

power amplifiers (PAs) utilized for signal 

transmission can face significant inefficiencies. The 

main drawback of non-overlapping PAs is that they 

are commonly required to achieve a larger dynamic 

range, which leads to larger power consumption 

and higher complexity [4]. Moreover, high PAPR 

can result in signal distortion, poor linearity and 

cross talk between adjacent frequency bands, all of 

which adversely affect the overall performance of 

the communication system [5]. Specifically, in terms 

of the inevitable growth of demand for high-

capacity, high-throughput communication for 5G 

and 6G networks, reducing PAPR turns into a 

progressively pressing quest for different 

researchers and engineers [6] [7]. Not only does 

PAPR minimization guarantee/ensure efficient 

power utilization, but it also allows the utilization of 

more power-efficient, economical components. 

There are several techniques that have been 

recommended over the years to solve the high PAPR 

problem in OFDM system. Besides classical 

approaches, e.g., Clipping and Filtering, Partial 

Transmit Sequence (PTS), and Selected Mapping 

(SLM) which are all signal manipulation based and 

achieved different levels of success [8]. However, 

these methods are computationally simpler but 

sometimes exhibit trade-off between the PAPR 

reduction and other performance metrics e.g., signal 

distortion, computational complexity, and 

robustness of the system [9] [10]. Additionally, the 

evolution of communication channels and the 

escalation of system complexity make it clear that 

conventional techniques may not be adequate to 

handle the requirements of future wireless networks 

[11]. 
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In the face of such challenges, Machine Learning 

(ML) has emerged as a potential paradigm to address 

the PAPR problem in OFDM systems. Machine 

Learning (ML) is a highly promising concept to 

enhance PAPR alleviation techniques and optimize 

them even further Based on executed supervised and 

unsupervised learning concepts. In contrast to 

conventional approaches, ML-based solutions can 

learn from data, adapt to evolving environments, and 

constantly enhance their performance [12]. These 

approaches are still limited to static features, and 

hence, novelty can be found in dynamically 

optimized PAPR in real time communication 

systems that are inherently variable in multiple 

parameters like channel conditions, traffic load, and 

user mobility [13]. Moreover, ML algorithms are 

capable of exploring complex, high-dimensional 

spaces, which makes them particularly suited to the 

nonlinearities and complex interdependencies 

characterizing PAPR ratio reduction [14]. 

Recently, there has been an increasing interest in 

the application of ML for the design and 

optimization of OFDM systems [1]–[10]. Several 

ML-based approaches, such as Artificial Neural 

Networks (ANN), Deep Neural Networks (DNN), 

and Reinforcement Learning (RL) models, have 

been proposed to solve the PAPR reduction issue 15. 

Recently, other methods are also being developed 

through the use of machine learning models that 

train the system to find optimal signal processing 

strategies through large datasets, substantially 

improving the overall PAPR reduction 

performances [17]. Moreover, the integration of 

massive antenna arrays along with multi-input 

multi-output (MIMO) systems with these prediction 

models can lead to higher efficiency solutions. 

Nevertheless, ML for PAPR reduction is still in its 

infancy and numerous challenges persist. The main 

drawbacks are large-scale training data requirement, 

overfitting problem, and computational complexity 

for real-time implementation [18]. 

In this review paper, the theoretical basics of the 

machine learning techniques used for effective 

PAPR reduction in OFDM systems has been 

discussed. Through a systematic review of the 

existing state-of-the-art works on ML techniques, 

their pros and cons, and finally their application 

scenarios, this study will provide a useful reference 

for those researchers, engineers, and practitioners 

working toward fourth-generation wireless links 

[19]. It aims to provide you with a comprehensive 

understanding of the way ML can be used to 

enhance PAPR reduction strategies, point out 

existing gaps in the literature, and recommend 

directions for future research. 

The remainder of the paper is structured as follows: 

in Section 2, the OFDM modulation is introduced 

along with its principles and the PAPR problem. In 

section 3, we discuss conventional methods for 

reducing PAPR, addressing their benefits and draws 

back. Section 4 reviews the state of the art for 

different machine learning techniques in PAPR 

reduction, specifically supervised learning 

algorithms including neural networks and 

reinforcement learning models. In Section 5 we 

cover the associated challenges for the application 

of ML to the PAPR reduction problem, such as data 

collection, the computational complexity of model 

implementation of optimization, and the deployment 

of online models. Also, future directions towards 

ML-aided PAPR mitigation, particularly in the 

context of more advanced paradigms of 

communication systems. Lastly, Section 6 wraps up 

the paper with a summary of key findings and 

recommendations for future work. 

Motivation to build PAPR reduction techniques 

which had been ensured in favorable conditions for 

practical implementations considering 5G and 

beyond systems employing OFDM-based 

communication systems. Machine learning, known 

for its ability to adapt and high-performance 

optimization potential, offers an interesting new 

avenue to accomplish this. This review will help fill 

this knowledge gap by discussing the foundations 

and recent progress in the field of ML based PAPR 

reduction methods. 

 

II. BACKGROUND ON OFDM MODULATION AND 

PAPR PROBLEM 

OFDM (Orthogonal Frequency Division 

Multiplexing) A multiplexer method of modulation 

that uses a massive amount of data. Its acceptance is 

so widespread that it is also supported in standards 

such as 4G LTE, and it is likely to continue to play 

an important role in 5G and future 6G networks. 

OFDM is a robust waveform for high-data-rate 

transmission in multipath fading and interference 

environments. But one of the essential 

disadvantageous OFDM signal has Peak-to-Average 

Power ratio (PAPR) which affects the efficiency of 

communication system. This section gives the 

essential concepts of OFDM modulation with 

detailed discussions on the PAPR problem. 

A. Overview of OFDM Modulation 

Orthogonal frequency division multiplexing 

(OFDM) is a multi-carrier modulation scheme in 

which a signal with a very high data rate is divided 

into several lower data-rate sub-signals, each of 

which are transmitted in parallel over a number of 

ortho-normal carriers. It allows communication 
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systems, especially broadband communication 

systems, to maximize the utilization of the available 

bandwidth. 

1. Basic Working Principle of OFDM 

Orthogonal Frequency Division Multiplexing 

(OFDM) converts data into multiple parallel 

streams, where each stream is modulated on a 

subcarrier (by a process known as Inverse Fast 

Fourier Transform, IFFT). The frequency 

components of the subcarriers are orthogonal, so 

their mutual interference is avoided, which allows 

full use of the available bandwidth [20]. 

A high-level view of the OFDM transmission 

process consists of the following steps: 

 Data Segmentation: The data stream is 

divided into separate sub-streams, with 

each of them assigned to a unique 

subcarrier. 

 IFFT: The sub-streams are fed into the 

according IFFT to generate time-domain 

signals. 

 Addition of Cyclic Prefix (CP): To mitigate 

the effects of multipath interference, a 

cyclic prefix (CP) is added to the 

transmitted signal. Broadly speaking, the 

CP assists with inter-symbol interference 

(ISI) reduction by providing an interval 

between OFDM symbols. 

 Transmission: The time-domain OFDM 

(orthogonal frequency division 

multiplexing) signal is transmitted through 

the communication channel. 

On the receiver side, the process works in the other 

way, where the Cyclic Prefix is eliminated and Fast 

Fourier Transform (FFT) is performed to get the 

data. 

2. Advantages of OFDM 

 Spectral Efficiency: With the orthogonality 

among the subcarriers, tightly packed 

subcarriers do not contribute to 

interference, leading to efficient utilization 

of available spectrum [21]. 

 Resistance to Multipath Fading: With its 

high level of resistance to multipath 

interference, OFDM is an excellent 

candidate for wireless communication, 

making it especially useful in mobile 

environments [22]. 

 Flexibility: OFDM can support multiple 

types of modulation schemes (e.g., QPSK, 

QAM), and it is flexible to different 

channel conditions (i.e., time-varying 

channels) [23]. 

These advantages has led to its being the modulation 

scheme of choice for new high-speed data 

transmission wireless systems. 

B. The PAPR Problem in OFDM 

Although OFDM has many advantages, it has an 

inherent limitation in the form of Peak-to-Average 

Power Ratio (PAPR). From the definition of PAPR, 

it is the ratio of the peak power of transmitted signal 

to the average power, which is an important metric 

for the evaluation of performance in communication 

systems. 

1. Definition and Calculation of PAPR 

The PAPR of an OFDM signal is mathematically 

defined as: 

𝑃𝐴𝑃𝑅 =
max|𝑥(𝑡)|2

𝐸[|𝑥(𝑡)|2]
 

(1) 

Where: 

 max|𝑥(𝑡)|2 is the maximum instantaneous 

power of the signal. 

 𝐸[|𝑥(𝑡)|2] is the average power of the 

signal [24]. 

In other words, the PAPR is the ratio between the 

peak value and average power of the signal, and a 

high PAPR can lead to several performance 

degradation in a communication system. 

2. Causes of High PAPR in OFDM 

High PAPR in OFDM systems is mainly attributed 

to the constructive addition of the various 

subcarriers at the receiver. As OFDM is making use 

of multiple subcarriers some of these can be in 

phase in time or constructively, such results as signal 

peaks in the time domain. 

 Constructive Individuation: In OFDM, a 

signal comprises various subcarriers. This 

causes the amplitudes to be summed up 

when the subcarriers are in phase, which 

can give peak power at certain timings [25]. 

 More Subcarrier Use: Usage of more 

subcarriers in an OFDM system will also 

increase the PAPR. Since the number of 

subcarriers is larger, simultaneous 

constructive interference is more probable 

leading to rising peak power [26]. 

The PAPR is not fixed and is time varying, thus 

hard to predict and manage. This variability must be 

managed to achieve optimized system performance. 

3. Implications of High PAPR 

Very high levels of PAPR pose various challenges 

in effective system operation in OFDM-based 

systems, particularly in terms of power amplifier 

efficiency and signal quality. 

 Efficiency of Power Amplifier: Power 

amplifiers are generally designed for 
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maximum power of transmitted signal. 

This leads to the inefficient utilization of 

the power as well as higher energy 

consumption because the amplifiers will 

need to operate over a broader dynamic 

range to compensate for the high PAPR 

[27]. 

 Signal Distortion– If the peak power goes 

beyond the amplifier’s range of operation, 

a distortion occurs called clipping. 

Clipping adds nonlinearity to the signal and 

leads to distortion and signal quality 

degradation [28]. 

 Interference and Spectral Regrowth: 

Higher PAPR can lead to emissions outside 

the allocated bandwidth and therefore 

cause interference to the adjacent 

frequency bands. This regrowth introduces 

spectral failure leading to degradation in 

the spectrally efficiency and interruption 

through other communication systems 

[29]. 

 High Computational Load: High PAPR 

signals need an enhanced signal processing 

techniques for produce mitigation increases 

the computational load on the system, 

especially in real-time applications [30]. 

Hence managing the PAPR is among the notable 

parameters for the integrity and also the effective 

operation of the paradigms of OFDM-based 

interaction systems. 

C. Traditional Methods for PAPR Reduction 

There have been some classical approaches for 

PAPR reduction in OFDM systems. The techniques 

generally include signal distortion, signal 

scrambling, and coding schemes. 

1. Clipping and Filtering 

The simplest method to reduce PAPR is clipping. It 

is responsible for clipping the amplitude of the 

signal and prevents overdrive. This approach may 

still distort the signal and raise the signal bit error 

rate (BER). 

 Clipping: When the signal crosses a limit, 

it is clipped. This lowers the peak power 

but can lead to severe distortion [31]. 

 Filtering: This is done post-clipping to get 

rid of out-of-band distortion and to recover 

some of the lost signal quality. 

This approach has the computational advantage, but 

at the cost of distortion and a possible performance 

drop. 

2. Partial Transmit Sequence (PTS) 

PTS works by first dividing the OFDM signal into 

multiple blocks and then applying some phase shifts 

to those blocks in order to reduce PAPR. Despite the 

significant reduction of PAPR using PTS method, it 

has a high computational complexity and so it is not 

suitable for real-time applications [32]. 

3. Selected Mapping (SLM) 

For SLM, it creates a series of OFDM signals with 

different phase sequences based on the input 

information bits and selects one with the minimum 

PAPR for transmission. Although SLM is efficient 

in PAPR reduction, it involves transmitting side 

information which impairs its spectral efficiency 

[33]. 

D. The Need for Machine Learning in PAPR 

Reduction 

Traditional techniques work effectively but usually 

compromise the balance between PAPR reduction, 

computational complexity, and system performance. 

While this is still true today, new technologies for 

wireless communications are emerging, such as 5G 

and future 6G networks, which create an immediate 

necessity for systems which can substantially 

increase performance in regard to both the signalling 

and channel propagation in an adaptive way to 

manage PAPR in OFDM systems. 

This problem can be addressed using Machine 

Learning (ML) which holds the promise of 

dynamically optimizing the PAPR reduction. ML 

technologies are able to learn from data, adapt to 

changing environments, and improve their 

performance over time. Conventional optimization 

methods work with a set of pre-defined rules and 

defined configurations, while ML enables to search 

dynamic solution space and generate adaptive 

solutions in real-time [34]. 

 

III. TRADITIONAL METHODS FOR PAPR 

REDUCTION 

PAPR mitigation is still a significant problem for 

OFDM networks, especially in large-capacity 

wireless technologies such as 5G and above. In 

classical PAPR reduction approaches, several 

techniques have been proposed over the years. Such 

techniques can be classified into signal distortion, 

signal scrambling and coding. Here we analyze 

these traditional approaches in-depth, showing their 

principles, benefits, and weaknesses. 

A. Signal Distortion Techniques 

One of the most straightforward and widely used 

approaches to mitigate PAPR is to apply signal 

distortion techniques. These techniques directly 

distort the transmitted signal, either by clipping the 

signal or by using more advanced techniques such as 

Active Constellation Extension (ACE). Although 

these techniques are relatively simple to implement, 

they tend to introduce performance degradation, like 
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stronger signal distortion or a higher BER (bit error 

rate). 

1. Clipping and Filtering 

The simplest method for reducing PAPR is 

clipping. This technique consists of establishing a 

threshold value and clipping the signal every time 

its amplitude surpasses this threshold value. 

Clipping reduces the peak power which translates 

into a reduced PAPR, but brings nonlinear 

distortions to the signal. 

 Clipping: This method simply clips the 

signal when its amplitude exceeds a 

certain threshold, which effectively drops 

the peak power. Yet, such process leads to 

generated signal distortion, resulting in 

high BER, e.g. when clipping level is too 

low [35]. 

 Filtering: It is common to apply a filter to 

correct for the distortion introduced by 

clipping. Filtering attenuates out-of-band 

spectral components, aiding in the 

restoration of some signal quality. 

Nonetheless, this filtering may not work 

too effectively if clipping is high, resulting 

in the large loss of signal power [36]. 

Although clipping and filtering are not 

computational heavy, they which degrade signal 

quality and is not suitable for cases which are 

required to maintain low BER. However, they are 

still a good choice for certain low-end applications. 

2. Active Constellation Extension (ACE) 

Another PAPR reduction method is based on 

distortion which is known as ACE. "This technique 

expands the constellation points of the signal 

outwards, creating equivalently new 'feasible 

regions' that cause the signal amplitudes to be more 

evenly distributed." ACE is used to reduce PAPR by 

lowering peak values by modifying the 

constellation. 

 Advantages: The ACE outperforms the 

PAPR reduction strike while maintaining 

the severe distortion at a moderate level and 

that makes it more preferable in high-class 

communication systems. 

 Drawbacks: The primary disadvantage of 

ACE is that its constellation points must be 

optimally tuned carefully, thus increasing 

the computational burden on the system 

and incurring significant delivery power 

afterwards to send (effectively) the 

expanded constellation points in 

competition [37]. 

ACE can leverage flexibility not achievable by 

clipping, and it can be optimized for a lower trade-

off between PAPR and BER. 

B. Signal Scrambling Techniques 

Signal scrambling techniques operate in an indirect 

way on the transmitted signal with the aim of 

spreading the power of the signal in time so as to 

lower the probability of high peaks. While these 

methods do not incur the severe distortion from 

clipping and filtering, they may involve additional 

processing or side information at the receiver. 

1. Partial Transmit Sequence (PTS) 

PTS is another extensively researched method for 

reducing PAPR in OFDM systems. PTS is a well-

known technique to mitigate the PAPR if the PAPR-

aware OFDM signal is divided into a number of 

sub-blocks, and phase rotation is then applied to 

each of the sub-blocks in order to construct the 

signal whose PAPR is minimized. In this phase 

rotation, we also search for the set of phase factors 

that minimize the PAPR. 

 Processing: The input data stream is 

divided into a number of sub-blocks which 

are phase-optimized through a search 

process. Then, these sub-blocks are 

recombined to reconstruct the desired 

signal, with PAPR that is significantly 

lower than the PAPR in the initial signal. 

 Benefits: With little signal distortion, PTS 

can achieve significant PAPR reduction 

and can be regarded as one of the most 

efficient conventional techniques. 

 Cons: The biggest downside of PTS is its 

computational complexity. The procedure 

is computationally demanding, 

particularly when more sub-blocks or 

increased modulation order is considered 

[38], since it involves trial-optimization of 

phase factors multiple times. Furthermore, 

since PTS needs to pass side information, 

it causes spectral efficiency loss. 

For systems where computational resources are 

available, PTS is one of the most promising 

approaches to reducing PAPR, despite its 

complexity. 

2. Selected Mapping (SLM) 

Another signal scrambling scheme is SLM [49] 

where multiple variants of the OFDM signal are 

generated based on different phase sequences. The 

signal with the minimum fall in PAPR is then 

selected to make the transmission. The receiver 

needs to know which phase sequence was used, thus 

some side information has to be sent along with the 

signal. 
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 Process: The OFDM signal is processed 

with a specific set of phase shifts, resulting 

in multiple candidate signals. The 

candidate with the least PAPR is picked 

for sending. 

 Benefits: Compared with clipping, SLM is 

less sensitive for the signal distortion and 

achieves a considerable decrease in PAPR. 

 Drawback: The need to send side 

information decreases the overall spectral 

efficiency. The more candidate signals, the 

higher the computational complexity [39]. 

Although SLM can significantly reduce PAPR, it 

introduces the trade-off between PAPR reduction 

and system efficiency. 

C. Coding Techniques for PAPR Reduction 

Coding techniques are widely used to change the 

signal structure or penetration at special coding 

strategies to mitigate PAPR. These techniques are 

more developed than signal distortion and 

scrambling techniques and usually require some 

type of redundancy or error correction to work as 

well. 

1. Tone Reservation (TR) 

It is a method in which a section of the subcarriers is 

reserved to transmit further tones for peak-signaling 

to minimize the peaks of the transmitted signal. 

These reserved tones are used for reducing high 

PAPR since they cancel peak powers. 

 Process: : Cancellation tones insertion 

requires reserving access to a certain set of 

subcarriers, this is performed in order to 

minimize the PAPR. So the reserved 

sounds are precisely dispensed into the 

signal, following the high power peaks. 

 Benefits: The TR can reduce the PAPR 

effectively with a minimum of signal 

distortion. Additionally, it can provide 

spectral efficiency depending on how 

many tones are reserved according to 

system needs. 

 Drawbacks: The major drawback of TR is 

the loss in spectral efficiency because of 

assigning the subcarriers for cancellation 

tones. Also, the approach supposes 

knowledge about the channel, which is not 

always easily available [40]. 

While TR can drastically improve PAPR 

performance, the overall performance in terms of 

system throughput and system complexity needs to 

be verified. 

2. Tone Injection (TI) 

TI is a technique in which certain tone values are 

injected at intervals into the signal that are intended 

to cause high power peaks to occur much less often. 

PAPR is reduced by using these tones, as they do 

not contain any information. 

 Process: TI accomplishes this by injecting 

extra tones at certain frequencies to 

distribute power throughout the signal and, 

in turn, reduce high peak values. 

 Benefits: TI is of low-complexity design 

and requires no side information 

transmission. 

 Cons: Like TR, TI impacts spectral 

efficiency since it reserves a section of the 

signal for tones that don’t convey data. 

Furthermore, TI needs to know more 

channel information to improve the 

positioning of the tones [41]. 

TI gives the simpler bitwise alternative to such 

schemes like TR but comes at the expense of 

reducing spectral efficiency. 

D. Summary of Traditional PAPR Reduction 

Methods 

Conventional PAPR reduction techniques like 

clipping, PTS, SLM, TR and TI, have shown a 

different level of success in solving the PAPR 

problem in OFDM systems. Different types have 

their own merits and demerits, as to computational 

complexity, signal distortion, spectral efficiency, 

and system performance. Although these methods 

are essentially beneficial in a large number of 

situation, they may not always be-fit to the strict 

specifications of current wireless communication 

systems, especially in within the idea of 5G and 

beyond. Consequently, there is an increasing 

demand to find these more dynamic and smarter 

solutions that the Machine Learning can provide. 

 

IV. MACHINE LEARNING-BASED TECHNIQUES 

TO REDUCE PAPR 

The problem of Peak-to-Average Power Ratio 

(PAPR) in Orthogonal Frequency Division 

Multiplexing (OFDM) systems can be effectively 

solved using machine learning (ML) techniques. 

Tasks related to PAPR reduction can be complex 

with largescale data and employment of ML based 

techniques to solve the issues has become very 

attractive given their adaptive nature in 

environments. Such techniques provide substantial 

benefits related to flexibility, real-time optimization, 

and computational efficiency. The rest of this 

section will give a detailed view of ML methods for 

PAPR reduction, including supervised learning, 

unsupervised learning, and reinforcement learning 

(RL) methods with their challenges and future 

trends. 



IJDACR 

 ISSN: 2319-4863 

 
International Journal of Digital Application & Contemporary Research 

Website: www.ijdacr.com (Volume 12, Issue 11, June 2024) 

A. PAPR Reduction Techniques based on 

Machine Learning 

The ML based methodologies provide a data-driven 

framework for refining the PAPR reduction 

algorithms in OFDM systems. Whereas 

conventional methods are based on static rules that 

do not change over time, ML algorithms can learn 

from data and change according to variations in 

channel conditions and communication 

environments. ML can help in PAPR reduction by 

learning patterns from historical data and applying it 

to the signal processing and power allocation 

process. 

For PAPR reduction, ML methods can be classified 

in three main categories: supervised learning, 

unsupervised learning, and reinforcement learning. 

Each of these methods has its advantages depending 

on the characteristics of the communication system. 

 Supervised Learning is the type where a 

model is trained on the labeled dataset, i.e. 

there is a definitive relation between the 

input features and the output. It is trained 

for a relationship between input (Signal 

parameters) and output (PAPR). 

 Unsupervised methods learn patterns and 

structures in data without relying on 

labeled data. They can be used to group 

signals with similar signal characteristics 

and to determine the best configuration for 

minimizing peak average power (PAPR). 

 Reinforcement Learning is a type of 

machine learning that deals with how 

agents ought to take actions in an 

environment in order to maximize some 

notion of cumulative reward, thus 

minimizing the PAPR. 

So, all of the techniques have some specific 

advantages in the context of the PAPR reduction 

problem and are application dependent as well as 

dependent on the nature of the communication 

system. 

B. Supervised Learning for PAPR Reduction 

One widely used ML technique for PAPR reduction 

is the supervised learning approach. It is based on 

the training of a model using input-output pairs from 

a dataset, meaning that this model learns how to 

associate the input signal (or subcarriers) to the 

output signal with reduced PAPR in this case. As 

input information enters the media, the models 

taught through supervised learning are capable of 

anticipating PAPR reduction techniques. 

1. Artificial Neural Networks (ANN) 

Artificial Neural Networks (ANNs) is a powerful 

model that is capable of capturing complex 

functions mapping inputs to outputs. This property 

is especially useful when the relation between the 

individual input and output is a nonlinear one, as it 

is normally the case for PAPR reduction methods. 

ANN model can be trained to learn the parameters 

for the process of reducing the peak to average 

power ratio (PAPR) in orthogonal frequency 

division multiplexing (OFDM). In particular, ANNs 

can be trained on a diverse dataset of OFDM signals 

with varying PAPR values, and the resulting model 

can learn to predict configurations of the signal that 

would yield low PAPR given a set of input features. 

 Pros: ANNs work for problems in which 

defining an input-output relationship is not 

obvious. Their capacity to approximate 

complex nonlinear functions makes them 

highly suitable for PAPR reduction 

techniques for OFDM systems [42]. In 

addition to that, ANNs can also optimize 

different system parameters like power 

allocation, which will enhance the entire 

system performance. 

 Cons: One of the significant challenges of 

using ANNs is the possibility of overfitting 

the model to the training data; this is 

especially true if the dataset used for model 

training is small or contains limited 

conditions for the diverse communication 

environments. Furthermore, ANNs need 

large volumes of labeled data to produce 

valid feature representations, which can 

also make training computationally 

expensive (especially for deep networks) 

[43]. 

2. DNN (Deep Neural Networks) 

A DNN can be considered an ANN structured with 

more than one hidden layer, allowing it to learn 

complex hierarchical structures of input data. 

Utilizing deep learning networks, or DNNs, 

becomes viable due to these networks' depth, which 

dramatically increases the potential numbers of 

patterns they can learn in the data, thus significantly 

enhancing achievable performance (especially in 

PAPR reduction). 

DNNs have also been used to reduce PAPR by 

mapping a given OFDM signal to an optimized 

output. Such networks can leverage the non-linear 

relationships between signal parameters and its 

peak-to-average power ratio (PAPR) to mitigate it 

more effectively. 

 Pros: DNNs can process high-dimensional 

input data and are capable of mapping 

complex dependencies, so they can be 

applied to an OFDM signal with a huge 

number of subcarriers. It has been shown 

that deep structures trained in a supervised 
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manner outperform shallow networks [44] 

in applications dealing with complex 

structures of signals at high dimensions. 

 Cons: To generalize well and not overfit, 

DNNs need millions of data points. 

Moreover, the training of deep neural 

networks is computationally challenging, 

taking a considerable amount of 

processing power and time. Also, DNNs 

have an often low interpretability with 

methods that makes it difficult to 

understand why they make certain 

decisions. 

3. Support Vector Machine (SVM) 

Support Vector Machines (SVM) are supervised 

learning models used for classification as well as 

regression tasks. For the purpose of reducing 

PAPR, SVM can be used to determine the optimal 

parameters for signal arrangement to achieve the 

lowest PAPR values. 

Application Example: SVM for PAPR Reduction: 

SVM can be used to classify the optimal phase 

shifts or signal parameters in order to minimize 

PAPR in an OFDM system. SVMs are trained on 

labeled data, which allows them to classify the 

signal configurations according to their PAPR 

values, and subsequently, they can choose the best 

configuration for transmission [45]. 

 Pros: SVMs are a powerful tool that makes 

use of a kernel trick to map non-linear input 

space features onto a high-dimensional 

feature space, creating a hyperplane which 

separates the two classes. They are 

particularly useful when you have a small 

dataset with complex, high-dimensional 

features. 

 Cons: Generally slow to train, especially 

with large datasets. Howbeit, on top of 

this, the use of hyper-parameters like the 

kernel parameter and regularization 

parameters makes SVM very difficult to 

use for PAPR reduction. 

C. Unsupervised Learning for PAPR Mitigation 

Cluster analysis is a technique of unsupervised 

learning that is used to identify groups or clusters in 

the data without labeled samples. Such approaches 

are particularly useful when the objective is either to 

analyze the intrinsic structure of the data or to 

discover groupings of signal configurations 

inducing low PAPR. 

1. K-Means Clustering 

K-Means clustering is a type of unsupervised 

learning in which a data set is divided into k clusters, 

which are defined as sets of items closer to each 

other compared to the others. K-Means may be used 

for PAPR reduction by clustering the various signal 

configurations on the basis of the PAPR, hence 

determining the configuration of lowest PAPR level. 

The algorithm will group the OFDM signal with 

similar parameters. Then, the signal with minimum 

PAPR in each cluster is selected for transmission. 

 Pros: The simplicity and efficiency of K-

Means make it easy to implement and 

effective for real-time applications. It is 

also simple to implement and does not 

require annotated data. 

 Limitations: As K-Means is reliant on the 

initial cluster centroids, it can converge on 

sub-optimal results. It is also restricted in 

the complexity of relationships it can 

model. 

D. Reinforcement Learning (RL) for PAPR 

Reduction 

It is a sub-field of machine learning that trains an 

agent through a series of interactions with an 

environment. Based on its actions, the agent receives 

rewards or penalties and learns how do to so the best 

and reach its long-term goals. RL techniques can 

dynamically modify signal parameters in a way that 

leads to lower PAPR without compromising system 

performance. 

1. Q-Learning 

Q-Learning is a model-free RL algorithm that is 

commonly applied to such optimization problems 

like PAPR reduction. In Q-learning, an agent learns 

to choose actions, for example, adjusting the signal 

parameters that is based on the current state, for 

example PAPR levels and channel conditions. 

 PAPR Reduction in Q-learning: The agent 

acts by selecting actions to update the 

transmission parameters (phase shifts or 

power levels) with the goal of minimizing 

PAPR. In this way, the agent is rewarded 

proportional to the reduction in PAPR and 

is able to learn the optimal actions over 

time. 

 Pros: Q-learning can perform online 

optimization, and will adjust to differing 

and changing network conditions. It is also 

very flexible and can be used to address a 

wide range of PAPR reduction issues [46]. 

 Limitations: The primary difficulty with Q-

learning is that the process becomes too 

computationally expensive, especially 

when there are a large number of possible 

actions. Another downside is that it needs a 

lot of training examples to learn good 

strategies. 
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2. Deep Q-Networks (DQN) 

DQNs generalize Q-learning with the addition of 

deep neural network to approximate the Q-values. 

DQNs help us solve even more complex problems 

now such as PAPR reduction in OFDM systems, for 

which both the state and action spaces tend to be 

large. 

 Use in PAPR Reduction: By approximating 

the Q-values with a neural network, DQNs 

can learn to optimize PAPR reduction 

strategies over time, enabling more 

effective decision-making in complex 

systems. 

 Pros: DQNs are capable of handling high-

dimensional data and large action space 

and thus are very powerful for complex 

PAPR reduction tasks [47]. 

 Limitations: DQNs tend to require large 

quantity of data to be trained effectively 

and are computationally heavy, which is 

more complex in real-time applications. 

Although machine learning methods provide 

tremendous enhancements for PAPR reduction, 

some challenges must be solved. A key challenge is 

the need for larger and more diverse training datasets 

to avoid overfitting. Moreover, because DNNs and 

DQNs are deep models, training them can be 

computationally expensive, making it difficult for 

real-time systems. The interpretability of ML 

models is another worry, especially in the case of 

communication systems, where something that is 

transparent and explainable is considered a 

necessity. 

In future works, hybrid models from hybrid ML 

techniques should be created to leverage the best of 

each of them– the combination of reinforcement 

learning and deep learning may yield enough 

flexibility to achieve a more efficient PAPR 

reduction. Additionally, leveraging ML-based 

approaches alongside next-generation 

communication technologies like massive MIMO 

and 6G systems shows potential to enhance PAPR 

reduction in these evolving wireless frameworks. 

V. CHALLENGES AND FUTURE DIRECTIONS 

Although machine learning (ML) techniques have 

exhibited significant promise in reducing the Peak-

to-Average Power Ratio (PAPR) of Orthogonal 

Frequency Division Multiplexing (OFDM) systems, 

there are multiple challenges associated with these 

techniques. Therefore, we need to focus on resolving 

these challenges to feasible ML-based approaches in 

practical large-scale communication systems 

looking into the future. In this part, we highlight 

important challenges and outline future directions 

for the ML-based approaches in PAPR reduction 

techniques. 

A. Key Challenges in Machine Learning based 

PAPR Reduction 

Machine learning algorithms lead to a considerable 

gain in PAPR mitigation, however, there are still 

several hurdles to be cleared before the intents can 

be executed in the real-world systems. These 

challenges can generally be divided into data 

challenges, computational challenges, and model 

challenges. 

1. Data-Related Challenges 

Apart from the algorithms devised with ML, 

training data is the backbone of ML-based PAPR 

reduction. The key data challenges are as follows: 

(Machine learning, especially deep learning, needs 

big datasets of data points to train its models.) The 

gathering of sufficient, quality data for PAPR 

reduction can be extremely difficult, especially for 

real-time/dynamic communication environments. In 

order for the model to generalize well and yield 

effective PAPR reduction, it must be trained on 

samples from a wide variety of channel conditions, 

modulation schemes used, and types of interferences 

present. 

 Rich Training Data: The training data for 

ML models has to be diverse encompassing 

a variety of scenarios from variations in 

channel conditions, user mobility, and 

network configurations. Overfitting occurs 

when the model fits too closely to the 

training data, which is particularly 

concerning when there is little diversity in 

the data. 

 Data Labeling: While supervised learning 

approaches such as neural networks and 

support vector machine (SVM) require the 

data to be labeleded. The problem over 

here is, this takes a lot of time and it cost a 

high amount of money to do manual 

labeling in complex communication 

systems. 

 Real-time Data Generation: Since PAPR 

reduction should be done in real-time in 

practical communication systems 

(particularly in 5G and beyond), such an 

implementation necessitates the ongoing 

collection and processing of data, which 

hinders the adoption of ML methods for 

PAPR reduction. 

2. Challenges in Computation 

Training machine learning models, and in particular 

deep learning models, requires a lot of 

computational power and comes with a series of 

challenges: 
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 Dataset Size: DNNs and other complex ML 

techniques, in particular, may need 

significant training hours, especially when 

the size of the dataset is huge and its 

dimensions are high. As a result, these 

approaches are challenging to implement in 

low-latency systems where real-time data 

processing is required due to the high 

processing power they require. 

 It has been noted that while RL approaches, 

such as Q-learning and deep Q-networks 

(DQNs), can optimize continuously in real 

time, the computational complexity of 

performing continual training under 

dynamic environmental conditions can be 

costly. This needs to be implemented in a 

timely manner, without compromising the 

efficiency necessary to enter the evolution 

of the channel or the variations in PAPR. 

 Hardware Requirements: The 

computational cost of training and 

inference can be prohibitive, this is 

especially true for practical 

implementations. This may require 

efficient hardware accelerators like 

Graphics Processing Units (GPUs) and 

Tensor Processing Units (TPUs), making 

deployment harder and more expensive. 

3. Model Related Challenges 

The proposed model and its design are the key 

ingredients for effective implementation of ML-

based PAPR reduction. At least a couple of model-

related challenges have to be solved: 

 Overfitting and Generalization: Overfitting 

is the effect when your ML model is 

having a good accuracy on the training data 

but it is not able to generalize on the data 

which was never seen before. Such 

behavior is particularly troublesome for 

communication systems where the 

channel conditions and signal 

characteristics can vary. A strong model 

that generalizes well to new, unseen 

conditions is vital for the real-world 

performance [48]. 

 Interpretability of Models: Deep learning 

models, despite being powerful in nature, 

are usually black boxes. These models are 

not interpretable, and it is hard to explain 

why a process concludes in a certain way. 

Model interpretability is vital in 

communication systems, where system-

wide parameters, such as power allocation 

or signal shaping, are impacted by user 

decisions. 

 Between Complexity and Model Size: 

Model Size matters a lot for the model 

performance and its deployment. Although 

bigger models can learn more complex 

relationships and often deliver lower error 

rates, bigger models also pay with higher 

computation costs, memory consumption, 

and slower inference. Balancing between 

complexity of models and efficiency is a 

challenge that keeps on persisting. 

B. Future Directions in ML-Based PAPR 

Reduction 

However, the prospects for ML-based PAPR 

reduction are bright. Using emerging technologies 

and exploring trending research topics create a wide 

range of opportunities for using ML methods for 

effective real-time and energy-efficient PAPR 

mitigation in OFDM systems. Here are some of the 

future trends discussed: 

1. Hybrid Approaches and Transfer Learning 

Hybrid models that incorporate multiple routes have 

gained attention at this point to tackle overfitting 

issues and data limitations encountered in the 

methods described here. Such mixed models can 

lead to better adaptability and efficiency. Therefore, 

in this strategy, whilst supervised learning will help 

to train the first model, reinforcement learning will 

iterate and make the model better by simulating it to 

interaction with real-time data. 

One example of this technique is transfer learning, 

which allows the learning from one domain to be 

transferred over to another domain. For PAPR 

mitigation, transfer learning enables the adaptation 

of trained models from simulated data to real 

environments, which is too costly and time-

consumptive, considering the limited amount of 

available datasets [49] 

2. Sleep Quality Awakens after Federated 

Learning on Distributed Networks 

Given the emerging trend of distributed networks 

such as 5G and beyond, federated learning provides 

a new paradigm to collaboratively train ML models 

on many devices without needing to centralize data. 

The key idea of federated learning is to perform local 

model training on each device and send only model 

updates to a central server, which reduces data 

communication cost and improves data privacy. 

PAPR reduction has specific challenges in large-

scale systems requiring real-time optimization based 

on heterogeneous devices, channel conditions, and 

network topologies, whereby federated learning will 

be particularly beneficial in handling the challenges 

due to its compatibility with privacy-aware designs. 
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Federated learning [50] improves the adaptability 

and scalability of ML-based PAPR reduction 

systems while protecting data privacy by allowing 

models to be trained in a distributed nature. 

3. Real Time and Low Latency Solutions 

However, demanding fast inference times due to the 

increasing need for real-time communications and 

low-latency systems, require these ML based PAPR 

reduction methods to be optimized. Techniques like 

model pruning, quantization, and knowledge 

distillation may be employed to decrease the 

complexity and computational expense of deep 

models, allowing them to be used in real-time 

systems. 

This includes developing edge-computing solutions 

that can help to offload processing to edge devices 

rather than relying entirely on central servers, 

allowing for more rapid decision-making. With the 

blend of ML models and edge computing, the 

system can update itself rapidly based on network 

condition changes, while executing PAPR reduction 

techniques in a real-time manner with minimal 

latency. 

4. Merged with 5G and 6G Networks 

PAPR reduction can take helpful advantages of 

deploying 5G and future 6G networks. As a result 

of the exponential increase in connected devices and 

the need for ultra-reliable low-latency 

communication (URLLC), the demand for efficient 

PAPR reduction techniques will increase. Through 

this evolution, ML-based methods will be pivotal, 

as they will allow networks to dynamically tailor 

PAPR reduction techniques to the current conditions 

and the behavior of users, adapting to changing 

traffic loads. By combining ML with high-end 

technologies such as massive MIMO and 

millimeter-wave communications, more reductions 

in PAPR can be achieved [51], thus optimizing the 

performance of the system and using the spectrum 

more efficiently. ML can take advantage of the 

capabilities offered by these future networks, so that 

it is able to optimize PAPR reduction in the 

different layers of communication and achieve 

efficient resource allocation and throughput. 

 

VI. CONCLUSION 

The paper offers a comprehensive overview of 

machine learning (ML)-based techniques to 

mitigate Peak-to-Average Power Ratio (PAPR) in 

Orthogonal Frequency Division Multiplexing 

(OFDM) systems. The emergence of wireless 

technologies and the evolution towards fifth 

generation 5G and upcoming sixth generation 6G 

networks have greatly emphasized the need for more 

effective PAPR reduction techniques. Although 

existing techniques such as Clipping and Filtering, 

Partial Transmit Sequence (PTS) and Selected 

Mapping (SLM) provide a certain level of relief, 

they come with performance degradation and are not 

suitable for next-generation systems. ML 

techniques, on the other hand, such as supervised-

learning (ANNs, DNNs), unsupervised learning (K-

Means clustering), and reinforcement learning (Q-

Learning, Deep Q-Networks), can be applied, which 

offer optimal alternatives for dynamic PAPR 

reduction. But the large and diverse datasets 

required, model interpretability, and real-time 

computational constraints still present major 

challenges. While most of the current literature only 

covered a relatively narrow set of ML algorithms, 

the field is progressing towards having hybrid ML 

models, federated learning models that would 

perform over distributed networks, and low-latency 

and real time models. Moreover, the combination of 

ML-based PAPR reduction techniques with 

emerging communication technologies, including 

massive MIMO and millimeter-wave 

communications, may facilitate efficient resource 

allocation, improved system throughput, and better 

spectrum utilization. In conclusion, the integration 

of ML techniques for PAPR minimization will be a 

crucial aspect in the development of the more 

intelligent, energy-saving, and scalable 

communication systems for the coming 5G and 

beyond era. 
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