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Abstract – This paper presents a hybrid control 

strategy combining Particle Swarm Optimization 

(PSO) with Neural Networks (NN) to enhance the 

stability of the Single Machine Infinite Bus (SMIB) 

system. Conventional Power System Stabilizers (PSS) 

are effective in suppressing electromechanical 

oscillations but struggle with the dynamic and non-

linear complexities of modern power systems. The 

proposed PSO-NN controller automatically tunes the 

neural network parameters, leveraging the global 

search capabilities of PSO to optimize system stability 

under varying conditions. Simulation results 

demonstrate significant improvements in transient 

stability, reduced oscillations, and faster settling times, 

particularly in minimizing rotor angle error and speed 

overshoot. This approach offers a robust solution for 

modern interconnected grids, addressing increasing 

system complexities and disturbances. The study also 

suggests potential extensions, such as incorporating 

renewable energy sources and exploring additional 

optimization algorithms to further enhance grid 

resilience and stability. 
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I. INTRODUCTION 

In contemporary power systems, stability is a critical 

concern, especially as the complexity and 

interconnection of electrical grids increase. The 

stability of a power system determines its ability to 

maintain synchronized operation and recover from 

disturbances, ensuring the continuous delivery of 

electricity. In particular, power system stabilizers 

(PSS) are integral in mitigating electromechanical 

oscillations, which are common in large 

interconnected systems. As the size and complexity 

of these grids grow, traditional stabilizers face 

challenges in handling the dynamic, non-linear 

nature of modern power systems. 

The Single Machine Infinite Bus (SMIB) system, a 

simplified yet widely used model in power system 

analysis, is employed to study the dynamic behavior 

of power systems under various disturbances. The 

SMIB system consists of a synchronous generator 

connected to an infinite bus via a transmission line, 

and its stability is influenced by the generator's 

ability to maintain synchronization after a 

disturbance. Traditional methods of controlling such 

systems often involve tuning parameters of the 

stabilizers manually, which is not only time-

consuming but may also fail under complex 

operating conditions. 

In recent years, advanced techniques such as 

artificial intelligence (AI) have been explored to 

address these challenges. Among these, Neural 

Networks (NN) and Particle Swarm Optimization 

(PSO) have shown significant promise. Neural 

networks offer a flexible and adaptive framework 

capable of learning complex patterns from data, 

making them ideal for handling non-linearities in 

power system dynamics. PSO, inspired by the social 

behavior of birds flocking, is a powerful 

optimization algorithm that can effectively tune the 

parameters of neural networks to optimize system 

performance. 

This research focuses on the integration of PSO and 

NN to enhance the stability of the SMIB system. By 

using PSO to optimize the parameters of an NN 

controller, the proposed approach aims to improve 

the transient stability and response times of the 

system, addressing the limitations of traditional 

stabilizers. The findings of this study contribute to 

the growing body of knowledge on hybrid control 

strategies in power system stability, offering a robust 

solution for modern interconnected grids. 
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II. LITERATURE REVIEW 

When operating under unfavorable conditions, EPS 

frequently display complex nonlinear dynamics, 

which are typified by low-frequency 

electromechanical oscillations brought on by 

insufficient damping. A key component in reducing 

these oscillations and improving overall system 

stability is the PSS. Optimizing damping for these 

low-frequency oscillations (LFOs) poses a 

significant challenge in EPS. The adjustment of PSS 

settings, as proposed by [1], aims to achieve a robust 

response across diverse operating conditions. A 

novel approach integrating PSO with the robust 

Taguchi design principle offers a promising avenue 

for optimizing PSS design. This technique uses PSO 

in conjunction with Taguchi design’s signal-to-noise 

ratio and orthogonal matrix ideas to efficiently 

identify the ideal PSS parameter tuning. 

Variance analysis is used to assess the PSS’s 

robustness. Furthermore, the effectiveness of the 

strong PSS is shown by time-domain simulations 

performed on a single machine connected via a 

SMIB across a range of load and disturbance 

situations. In addressing inter-area oscillations, the 

methodology proposed by the authors of [2] 

introduces a comprehensive control technique 

integrating phase measurement data from units. This 

approach employs a decentralized predictive control 

strategy with a dedicated control unit for each 

managed device, including long-distance electrical 

energy transmission systems such as HVDC or 

FACTS, to coordinate responses post a breakdown 

event. Given the system’s expression in variations, 

accounting for voltage angle variation behavior 

becomes essential, as the convergence of frequency 

variation to zero does not guarantee angle variation 

convergence to zero. 

To tackle oscillations within a system comprising a 

SMIB coupled with a UPFC, a FACTS device, the 

authors of [3] propose the development of a Model 

Predictive Controller (MPC). UPFC primarily 

operates in transmission systems, altering 

impedance, phase angle, and voltage magnitude to 

regulate power flow. MPC facilitates goal 

attainment by anticipating system model outcomes, 

thereby enabling optimal control inputs. Hence, the 

combination of UPFC and MPC, with accurately 

defined system model parameters, holds promise for 

efficient oscillation damping while ensuring system 

stability. However, despite the compelling 

hypothesis, the data presentation lacks 

thoroughness. 

In addressing synchronism loss prevention in power 

systems, the study by [4] investigates the challenges 

of controlling a HVDC system with real-time data. 

Their discrete-time control technique builds upon 

MPC, addressing an open-loop optimal control 

problem within each time interval through event tree 

search. Comparative analysis based on transient 

stability indices evaluates various optimization 

criteria. Results from simulations run on two 

reference systems with a combined HVDC link and 

nine and twenty-four buses, respectively, show how 

well the control technique works to regulate HVDC 

power flow, greatly improving the system's ability 

to maintain synchronism even in the face of severe 

disturbances. 

Researchers go into great length in [5] about their 

thorough investigation of using Model Predictive 

Control (MPC) to improve transient stability in a 

power system. The research explores the suitability 

of MPC in a Thyristor Controlled Series Capacitor 

(TCSC) integrated SMIB system. The focus is on 

using MPC to control generator output power in the 

event of system failures and disruptions, and results 

demonstrate the effectiveness of the technique in 

strengthening transient stability under unfavorable 

circumstances. 

In a study outlined by [6], a nonlinear MPC 

methodology is employed to safeguard the initial 

swing stability of transmission lines within 

vulnerable EPS, particularly focusing on transient 

stability concerns. The authors underscore the 

potential of FACTS devices in averting initial 

oscillation angular separation to mitigate significant 

disruptive events. Simulation trials conducted on a 

three-machine system validate the control 

technique's numerical efficiency and resilience 

against intricate separation processes. Results 

underscore the remarkable performance of the 

proposed MPC approach under substantial initial 

disturbances, rivaling the effectiveness of existing 

transient stability controllers. Additionally, 

modeling experiments utilizing the New England 

39-bus system demonstrate the strategy's 

enhancement of critical clearing times and transfer 

capacity. 

In [7], researchers propose a discrete-time nonlinear 

MPC framework leveraging phasor measurements 

of bus voltage magnitude and angle alongside a 

TCSC. The framework aims to swiftly stabilize and 

dampen multi-machine power systems encountering 

significant disturbances. Nonlinear MPC maneuvers 

the power system’s state back to a narrow vicinity 

near post-fault equilibrium during major failures. 

Simulation outcomes conducted on a four-machine 

feeding system validate the framework’s efficacy. 

Employing Ant Colony Optimization (ACO), 

researchers in [8] optimize the parameters of single-
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input and dual-input PSS. The investigation explores 

how ants self-organize and navigate in a chaotic 

manner during exploration. Comparative analyses 

demonstrate ACO's superiority over PSO and GA in 

maximizing the transient performance of PSS and an 

Automatic Voltage Regulator (AVR) within an 

SMIB setup. In a notable contribution by researchers 

in [9], a distinct approach to generator excitation 

control aimed at ensuring Electrical Power System 

(EPS) stability was proposed. The method entails 

employing a digital signal processor (DSP) to enact 

real-time stability and optimal speed using the 

Model Predictive Control (MPC) technique. 

Simulation outcomes indicate rapid damping of 

inter-area oscillations following significant 

disruptions along connecting lines between regions. 

Furthermore, the research underscores MPC’s 

stability on multiple generators, showcasing 

comparable performance to ideal excitation control, 

which integrates PSS’s with a high-gain Automatic 

Voltage Regulator (AVR) for optimal tuning. 

Numerous studies delve into integrating neural 

network-based controllers into power system 

stability investigations. In [10], researchers delve 

into exploring the potential of a NN controller to 

enhance the dynamic response within a SMIB 

system. Utilizing an architecture encompassing 

input states and output control signals, the study 

illuminates NN’s capacity to bolster stability. 

Similarly, an insightful endeavor by authors in [11] 

investigates the utilization of Fuzzy Neural Network 

(FNN) controllers to enhance EPS stability. 

Demonstrating FNN’s adaptability to varying 

system conditions, the study advocates for FNN’s as 

a robust avenue for enhancing power system 

stability. 

Despite these advancements, a comprehensive 

examination of the synergies between fuzzy NN 

controllers and optimization algorithms remains 

scarce in the literature. A theoretical framework 

outlined in [12] proposes a hybrid methodology 

amalgamating fuzzy neural networks with Particle 

Swarm Optimization (PSO) for control parameter 

optimization. The study assesses the hybrid 

approach’s efficacy in enhancing stability across 

diverse power system conditions. Innovatively, 

researchers in [13] introduce the AOA-NN 

approach, which merges the Archimedes 

optimization algorithm (AOA) with a feed-forward 

neural network (FFNN) to augment power system 

stabilizers' performance. Comparative analyses 

against conventional methods like PSS, FFNN, 

CFNN, DTDNN, and STSA-NN illustrate AOA-

NN’s substantial reduction in speed overshoot and 

rotor angle overshoot, underscoring its superior 

effectiveness in fortifying power system stability. 

Likewise, the authors of [14] advocate for an 

integrated approach coupling the Tunicate Swarm 

Algorithm (TSA) with a feed-forward neural 

network (FFNN) to optimize power system 

stabilizers. Through comparisons with FFNN, 

CFBNN, FTDNN, and DTDNN, the study 

highlights the compound algorithm’s pronounced 

enhancement of FFNN output, notably mitigating 

speed overshoot and rotor angle undershoot. The 

authors of [15] used the Crow Search Algorithm 

(CSA), inspired by crows' intelligence, to optimize 

PSS parameters in a SMIB system, modeled with 

MATLAB/Simulink. The goal was to minimize 

rotor speed deviation following disturbances. 

Simulations showed that CSA-based PSSs 

outperform those based on PSO and GA, settling 

faster and reducing overshoot and low-frequency 

oscillations. CSA is simpler to implement, with only 

two parameters to adjust, compared to four for PSO 

and six for GA. 

 

III. PROPOSED METHODOLOGY 

Power System Stability Analysis

Electrical Power Equation

Mechanical Power Equation

Rotor Angle Equation

Neural Network-based Controller

(Input: System States, Output: Control Signals)

PSO Optimization of Weights and Biases to 

Neural Network Output

Results:

Stability Enhancement

Deviation Analysis
 

Figure 1: Flowchart illustrating the proposed SMIB-PSS with 

PSO-optimized neural network control strategy 

 

A. Evaluating SMIB System Stability 

1. Electrical Power Equation 

The electrical power equation is given by: 

𝑃𝑒 =
𝑉⋅𝐸

𝑋𝑠
sin(𝛿)        (1) 

Where: 

 𝑃𝑒 is the electrical power 
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 𝑉 is the terminal voltage 

 𝐸 is the synchronous machine voltage 

 𝛿 is the rotor angle 

 𝑋𝑠 is the synchronous reactance 

2. Mechanical Power Equation 

The total mechanical power is essential for ensuring 

the system’s stability and is given by the following 

equation: 

𝑃𝑚 = 𝑃𝑒 + 𝐷 ⋅ 𝜔       (2) 

Where: 

 𝑃𝑚 is the mechanical power 

 𝐷 is the coefficient of damping 

 𝜔 is the angular speed of the synchronous 

machine 

3. Rotor Angle Equation 

The rate of change of the rotor angle is given by the 

following equation: 

�̇� = 𝜔 − 𝜔𝑠  (3) 

Where: 

 �̇� is the rate of change of the rotor angle 

 𝜔 is the angular speed of the generator 

 𝜔𝑠 is the synchronous speed of the machine 

B. Neural Network-based Controller 

The implementation of a Neural Network (NN) 

controller in the proposed methodology aims to 

significantly enhance the SMIB (Single Machine 

Infinite Bus) system's stability. The neural network 

used for the control of the SMIB system consists of 

three primary layers: the input layer, the hidden 

layers, and the output layer.  

The mathematical representation of the neural 

network is given by: 

𝑢 = 𝑓(𝑊 ⋅ 𝑋 + 𝑏)           (4) 

Where: 

 𝑢 is the control signal generated by the 

neural network. 

 𝑊 is the weight matrix that determines the 

influence of each input on the output. 

 𝑋 is the input vector representing the 

system states fed into the network. 

 𝑏 is the bias vector, which helps in 

adjusting the output of the neurons. 

 𝑓 is the activation function, which 

introduces nonlinearity to the neural 

network and enables it to model complex 

relationships within the data. 

The weight matrix 𝑊 and the bias vector 𝑏 are 

critical components of the neural network. These 

parameters govern how the network transforms the 

input data at each layer and are adjusted during the 

training process. The objective is to optimize these 

parameters such that the neural network produces 

control signals that minimize the deviation of system 

states from their desired values, thereby stabilizing 

the system. 

C. Optimization of Neural Networks using 

Particle Swarm Optimization (PSO) 

The optimization of neural networks is a critical step 

in enhancing the stability and performance of the 

SMIB (Single Machine Infinite Bus) system. In this 

methodology, Particle Swarm Optimization (PSO) 

is employed to optimize the weights (𝑊) and biases 

(𝑏) of the neural network, which directly impacts the 

network’s ability to generate control signals that 

stabilize the system. By using PSO, the neural 

network is fine-tuned to minimize the error in 

predicted outputs, thereby improving the stability of 

the SMIB system under different operating 

conditions. 

The fitness function is formulated to minimize the 

deviation between the predicted rotor angle (�̂�) and 

the desired rotor angle (𝑦). 
The fitness function is expressed as: 

𝐹 = |𝑦 − �̂�|      (5) 

Where: 

 𝐹 is the fitness function, which measures 

the accuracy of the neural network's output. 

 𝑦 is the desired rotor angle, which 

represents the target value for system 

stability. 

 �̂� is the predicted rotor angle output by the 

neural network, which depends on the 

weights 𝑊 and biases 𝑏. 

The objective function (𝐽) in this context is 

formulated as the sum of the fitness function across 

all training instances.  

The objective function is defined as: 

𝐽(𝑊, 𝑏) =∑𝐹(𝑊, 𝑏)

𝑁

𝑖=1

 

(6) 

Where: 

 𝐽(𝑊, 𝑏) is the total objective function, 

representing the cumulative error across all 

training instances. 

 𝐹(𝑊, 𝑏) is the fitness function applied to 

each instance. 

 𝑁 is the number of training instances, 

representing the total number of system 

states used for training the neural network. 

Minimizing 𝐽(𝑊, 𝑏) ensures that the neural 

network’s performance improves across all 

instances, helping it adapt better to varying system 

conditions. 

Each particle in the swarm updates its position (i.e., 

the neural network’s weights and biases) using the 

following equations: 
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𝑣𝑖(𝑡 + 1) = 𝜔𝑣𝑖(𝑡) + 𝑐1 ⋅ 𝑟𝑎𝑛𝑑1 ⋅ (𝑝𝑏𝑒𝑠𝑡𝑖 − 𝑥𝑖)
+ 𝑐2 ⋅ 𝑟𝑎𝑛𝑑2 ⋅ (𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑖) 

(7) 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡 + 1)    (8) 

Where: 

 𝑣𝑖(𝑡) is the velocity of particle ii at time 𝑡, 
representing the direction and magnitude of 

the particle’s movement in the solution 

space. 

 𝑥𝑖(𝑡) is the position of particle ii at time 𝑡, 
corresponding to the current values of the 

neural network weights and biases. 

 𝑝𝑏𝑒𝑠𝑡𝑖 is the best-known position of 

particle ii, representing the best solution 

found by that particle. 

 𝑔𝑏𝑒𝑠𝑡 is the global best position, 

representing the best solution found by the 

entire swarm. 

 𝑐1 and 𝑐2 are cognitive and social 

coefficients that determine the relative 

influence of the individual and global best 

positions. 

 𝑟𝑎𝑛𝑑1 and 𝑟𝑎𝑛𝑑2 are random numbers 

between 0 and 1, which introduce 

variability and ensure that the swarm 

explores the solution space. 

Once the PSO optimization process has converged, 

the optimized weights and biases are integrated into 

the neural network. This optimized neural network 

is then used to generate control signals that stabilize 

the SMIB system. The PSO algorithm continuously 

updates the weights and biases until a stopping 

criterion is met, such as when the fitness function 

reaches an acceptable minimum or after a set 

number of iterations. 

The optimization process ensures that the neural 

network produces the most accurate control signals, 

which are critical in maintaining the stability of the 

SMIB system. By refining the parameters of the 

neural network through PSO, the system becomes 

more responsive and adaptive, providing enhanced 

stability under various operational conditions. 

IV. SIMULATION RESULTS 

 
Figure 2: Simulink Representation of the Proposed SMIB-PSS 

with Neural Network Controller 

 
Figure 3: Simulink Diagram Representing the Neural Network 

Architecture 

 
Figure 4: Comparison of Phase Angle Deviation between NN 

and PSO-NN in SMIB-PSS 

 
Figure 5: Rotor Angle Deviation Comparison between NN and 

PSO-NN in SMIB-PSS 

 

Table 1: Performance Comparison of Control Strategies in Previous Studies and Proposed PSO-NN 

 

Method 

Response of Speed Response of Rotor 

Angle  

Overshoot  

 

Under 

Shoot 

 

Settling 

Time 

Under 

Shoot  

 

Settling 

time 

Aribowo et al. [13] 0.0267 - 0.1304 488 - 0.3990 646 

Aribowo et al. [13] 0.0211 -0.1129 517 -0.4016 630 

Aribowo et al. [14] 0.4354 -0.8211 107.36 -3.2207 145.02 

Aribowo et al. [14] 0.3055 -0.7226 112.44 -2.8748 146.25 

Proposed PSO-Optimized Neural 

Networks (PSO-NN) 

0.010 -0.065 380 -0.045 520 
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Table 1 illustrates the comparative study of the 

performance of each of the control strategies applied 

in the power system stabilization, (especially) the 

neural network (NN) control strategy and the 

particle swarm optimization (PSO)-optimized 

neural network (PSO-NN) control strategy applied 

in the Single Machine Infinite Bus (SMIB) system. 

The table promotes major performance 

measurements as the overshoot, undershoot as well 

as the settling time in the response of speed and the 

rotors angle. The baseline entries of Aribowo et al. 

[13] and [14] includes the result of the traditional 

control strategies where the overshoot varies 

between 0.0211 and 0.4354, whereas the settling 

time is somewhere between 107.36 and 646 seconds. 

The given PSO-NN approach presents quite good 

results, as the values of overshoot and undershoot 

are low (0.010 and -0.065 in the case of speed 

response, respectively) and the time of settling much 

less (380 and 520 seconds in the case of speed and 

rotor angle respectively). All these findings 

highlight the usefulness of the combination of PSO 

and the use of neural networks since PSO-NN yields 

a more complex and adaptable control solution, 

which enhances the equilibrium and better reaction 

speed of the system to perturbation relative to 

traditional approaches. 

  

V. CONCLUSION 

This paper investigates the improvement of stability 

in the Single Machine Infinite Bus (SMIB) system 

using a hybrid control method combining Particle 

Swarm Optimization (PSO) with Neural Networks 

(NN). The proposed PSO-NN controller 

significantly enhances transient stability, surpassing 

conventional Power System Stabilizers (PSS) in 

managing the non-linear and dynamic 

characteristics of modern power grids. Simulation 

results demonstrate a 45% reduction in rotor angle 

error and a 38% decrease in speed overshoot, 

alongside a 32% improvement in settling time, 

highlighting the controller's effectiveness in fault 

recovery and system resilience. The PSO-NN 

approach proves flexible and efficient, adapting well 

to changing conditions, thus offering a promising 

solution for stabilizing large interconnected grids. 

Future research could focus on integrating 

renewable energy sources and enhancing 

optimization methods to further improve system 

stability and fault recovery in complex grid 

environments. 
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