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Abstract – This paper introduces a robust methodology 

aimed at improving the detection and diagnosis of 

rolling element bearing faults, particularly in settings 

where other machinery components create masking 

signals that complicate fault identification. The 

proposed approach integrates advanced signal 

processing techniques with a straightforward 

classification method to achieve precise fault diagnosis. 

The methodology involves signal preprocessing, which 

includes wavelet transform-based denoising and 

normalization to enhance the signal-to-noise ratio and 

standardize signal amplitude. Subsequent Kurtogram 

analysis visualizes and quantifies transient features 

within the signal across various frequency bands using 

Short-Time Fourier Transform (STFT), highlighting 

impulsive and non-Gaussian characteristics indicative 

of faults. Spectral Kurtosis further isolates frequency 

bands with significant fault-related transients by 

identifying deviations from Gaussian behavior. 

Optimal frequency bands are selected based on a 

combined assessment of kurtosis and spectral kurtosis, 

followed by band-pass filtering to isolate these bands. 

Fault detection is performed using Envelope Spectrum 

Analysis to extract fault-specific frequencies from the 

filtered signal. A rule-based classifier, utilizing the log 

ratio of BPFI to BPFO amplitudes, is introduced for 

fault classification. Validation with test data shows 

consistent distributions and perfect accuracy, 

demonstrating the approach's effectiveness. 

Implemented and simulated in MATLAB, this 

integrated methodology enhances fault detection 

accuracy and lays the groundwork for future research 

involving advanced classification algorithms and 

additional diagnostic features. 

 

Keywords – BPFI, BPFO, Kurtogram, Spectral 

Kurtosis, STFT, etc. 

 

I. INTRODUCTION 

Rolling element bearings are critical components in 

a wide range of rotating machinery, from automotive 

engines to industrial equipment. Their primary 

function is to support and guide rotating shafts, 

facilitating smooth and precise movement between 

fixed and moving parts. Despite their robustness, 

these bearings are susceptible to wear and tear, 

which can lead to failures if not detected and 

addressed promptly. Given their importance, the 

accurate detection and diagnosis of bearing faults 

are crucial for maintaining machinery reliability and 

preventing costly downtime. 

Traditionally, fault detection in bearings has relied 

on time-domain and frequency-domain analysis 

techniques. However, these methods often struggle 

to identify subtle fault signals, particularly in noisy 

environments where vibrations from other machine 

components can mask the signs of degradation. As 

machinery becomes more complex and operational 

environments more demanding, there is a growing 

need for advanced diagnostic methods that can 

effectively isolate and identify fault-related signals. 

Recent advancements in signal processing have 

introduced new techniques for enhancing fault 

detection. One such approach involves the 

integration of Kurtogram-driven Spectral Kurtosis 

for optimal frequency band selection. The 

Kurtogram is a powerful tool that visualizes the 

frequency bands most likely to contain fault-related 

transients. Spectral Kurtosis, on the other hand, 

measures deviations from Gaussian behavior in the 

frequency domain, providing a quantitative 

assessment of signal anomalies. 

This paper explores the application of these 

advanced techniques to improve fault detection in 

rolling element bearings. By employing wavelet 

transform techniques for signal denoising and 

normalization, the study aims to enhance the quality 

of vibration signals, making it easier to identify 

potential faults. The combination of Kurtogram and 

Spectral Kurtosis enables a more refined analysis of 

frequency bands, which is critical for isolating fault 

signals from noise. 

The proposed methodology focuses on optimizing 

frequency band selection to balance sensitivity and 
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specificity in fault detection. A frequency band that 

is too narrow may overlook critical fault 

information, while one that is too broad may be 

overwhelmed by noise. By leveraging Kurtogram-

driven Spectral Kurtosis, this paper aims to identify 

the most informative frequency bands, thereby 

improving diagnostic accuracy and reliability. 

The anticipated outcomes of this paper include 

improved fault detection accuracy, reduced false 

alarms, and earlier identification of potential faults 

compared to conventional methods. The integration 

of these advanced techniques seeks to develop a 

more effective and reliable bearing monitoring 

system, which is essential for maintaining the 

operational integrity of critical machinery across 

various industries. 

The remainder of this paper is organized as follows: 

Section II reviews existing literature on fault 

detection methods for rolling element bearings, 

focusing on traditional and advanced techniques. 

Section III presents the proposed methodology, 

detailing the processes of signal processing, 

Kurtogram analysis, and Spectral Kurtosis. Section 

IV describes the experimental setup and results of 

the proposed approach. Finally, Section V concludes 

the paper and suggests directions for future research 

in bearing fault detection and diagnostic systems. 

 

II. LITERATURE REVIEW 

Recent research into fault detection for rolling 

element bearings has highlighted significant 

advancements and identified ongoing challenges. A 

study by [1] explores the integration of Spectral 

Kurtosis with adaptive Wavelet Transform 

techniques. This approach enhances fault detection 

sensitivity by aligning the wavelet analysis more 

closely with transient fault signals. However, it 

introduces the complexity of precise parameter 

tuning, which increases computational demands and 

complicates practical implementation. 

Complementarily, the research by [2] investigates 

combining Kurtogram with deep learning 

frameworks for automated fault classification. This 

innovative approach leverages deep learning's 

capacity to handle large datasets and complex fault 

patterns. Yet, the need for extensive labeled data 

poses a significant limitation, particularly in 

scenarios where data is scarce or difficult to label. 

Further advancements are seen in the adaptive 

Spectral Kurtosis methods, as detailed by [3]. This 

study presents a method that dynamically adjusts its 

parameters based on real-time signal characteristics, 

improving fault detection accuracy under varying 

conditions. However, the increased computational 

complexity and the continuous need for parameter 

adjustments can challenge real-time applications. 

Similarly, the work by [4] combines Spectral 

Kurtosis with Empirical Mode Decomposition 

(EMD) to analyze non-stationary signals, enhancing 

fault detection capabilities. Despite this, EMD's 

sensitivity to noise and potential mode mixing can 

impact the accuracy of fault detection. 

In an effort to improve the Kurtogram methodology, 

[5] introduces refinements to better handle non-

stationary signals, resulting in more accurate fault 

detection in diverse conditions. However, these 

enhancements come with increased computational 

requirements and complexity. The review by [6] 

offers a comprehensive overview of Spectral 

Kurtosis applications in gearbox fault diagnosis, 

summarizing various methodologies and 

advancements. While valuable for understanding 

current trends, this review lacks new experimental 

results and methodological innovations. 

Research by [7] integrates Kurtosis with machine 

learning techniques to enhance fault classification 

accuracy. This hybrid approach benefits from the 

ability of machine learning to classify features 

identified by Kurtosis. Nonetheless, the reliance on 

substantial datasets and computational resources 

limits practical implementation. The study by [8] 

improves fault detection by combining Kurtogram 

with statistical signal processing methods, which 

enhances sensitivity and specificity. However, this 

combination increases analysis complexity and 

computational load. 

The work by [9] explores the integration of Spectral 

Kurtosis with Convolutional Neural Networks 

(CNNs), enhancing feature extraction and 

classification accuracy. Yet, this approach demands 

significant computational resources and large 

datasets, which may not be feasible in all practical 

scenarios. In a similar vein, [10] demonstrates the 

use of hybrid machine learning models with 

Kurtogram for fault diagnosis, showing improved 

performance but also requiring extensive training 

data and computational resources. 

Another notable contribution comes from the study 

by [11], which combines Spectral Kurtosis with 

Genetic Algorithms (GAs) to optimize fault 

diagnosis. While GAs help fine-tune parameters, 

they can be slow to converge and computationally 

intensive. The integration of Spectral Kurtosis with 

Principal Component Analysis (PCA), as explored 

by [12], improves fault detection by reducing 

dimensionality, though PCA's potential failure to 

capture non-linear relationships may affect 

diagnostic accuracy. 
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Research by [13] combines Kurtogram with 

Extreme Learning Machines (ELMs) to enhance 

classification speed and accuracy. However, ELMs 

are sensitive to data quality and generalization to 

new fault types. Additionally, [14] integrates 

Spectral Kurtosis with Variational Mode 

Decomposition (VMD), which improves fault 

detection by decomposing signals into intrinsic 

modes. Yet, VMD's performance is sensitive to 

decomposition parameters, which can influence 

accuracy. 

Finally, the study by [15] combines Kurtogram with 

Ensemble Empirical Mode Decomposition (EEMD) 

to address non-stationary signals more effectively. 

While this method enhances fault detection, it 

introduces computational demands and potential 

mode mixing artifacts. 

A. Research Gaps 

Despite these advancements, several critical 

research gaps persist. Current methods often 

struggle to handle the complexities introduced by 

variable operating conditions and masking signals 

from other components, which can reduce fault 

detection accuracy. There is also a lack of 

comprehensive solutions that integrate real-time 

processing with high sensitivity and specificity 

across diverse fault types. Existing methodologies 

frequently exhibit limitations in scalability and 

adaptability, particularly in large-scale or highly 

dynamic industrial environments. To address these 

gaps, there is a need for more robust and versatile 

diagnostic tools that can better manage intricate 

signal characteristics and operational variations, 

enhancing accuracy, efficiency, and applicability in 

practical settings. 

 

III. PROPOSED METHODOLOGY 

The proposed methodology aims to enhance the 

detection and diagnosis of rolling element bearing 

faults, especially when strong masking signals from 

other machine components are present. By 

integrating Kurtogram analysis and Spectral 

Kurtosis for optimal frequency band selection, this 

approach isolates the most informative frequency 

bands containing fault-related signals. The 

methodology involves several key stages: signal 

preprocessing, Kurtogram analysis, Spectral 

Kurtosis computation, optimal band selection, fault 

detection using envelope spectrum analysis, and 

diagnosis. Figure 1 shows the flow diagram for 

proposed research work. To ensure the effectiveness 

and generalizability of this methodology, it relies on 

a comprehensive dataset [16] that captures a wide 

range of operating conditions and fault scenarios. 

Rest of the stages are detailed below with relevant 

mathematical formulations. 

Data Collection

Signal Preprocessing

Feature Extraction

Using:

Kurtogram Analysis and Spectral Kurtosis 

Computation

Optimal Band Selection

Fault Detection and Diagnosis using Envelope 

Spectrum Analysis

Classification for Fault Diagnosis

 
Figure 1: Flow diagram for proposed research work 

 

A. Signal Preprocessing 

In this paper, signal preprocessing involves 

techniques aimed at enhancing the quality of raw 

vibration signals collected from rolling element 

bearings. The main objectives are to improve the 

signal-to-noise ratio (SNR) and ensure accurate fault 

detection. This is achieved by using a combination 

of wavelet transform for denoising and 

normalization for standardization. 

1. Denoising Using Wavelet Transform 

We employ the discrete wavelet transform (DWT) 

for denoising, which is particularly effective for 

non-stationary signals such as those from rotating 

machinery. The DWT decomposes the signal into 

different frequency components, making it easier to 

identify and suppress noise. 

The discrete wavelet transform of the signal 𝑥(𝑡) is 

defined as: 

𝑊𝑥(𝑗, 𝑘) = ∑ 𝑥(𝑛)𝜓𝑗,𝑘(𝑛)𝑛            (1) 

Where, 

 𝑊𝑥(𝑗, 𝑘) represents the wavelet coefficients 

at scale 𝑗 and position 𝑘, 

 𝜓𝑗,𝑘(𝑛) is the discrete wavelet function for 

scale 𝑗 and position 𝑘,  

 𝑛 is the discrete time index. 
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For denoising, we apply a thresholding technique to 

the wavelet coefficients. The coefficients are 

processed through a threshold function 𝑇 to suppress 

noise while preserving significant signal features: 

𝑊̂𝑥(𝑗, 𝑘) = {
𝑊𝑥(𝑗, 𝑘), 𝑖𝑓 |𝑊𝑥(𝑗, 𝑘)| > 𝜏

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2) 

Where 𝜏 is the threshold value, typically set using 

methods such as Stein's unbiased risk estimate 

(SURE) or universal thresholding. 

The thresholded wavelet coefficients are then used 

to reconstruct the denoised signal: 

𝑥𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑(𝑡) = ∑ 𝑊̂𝑥(𝑗, 𝑘)𝜓𝑗,𝑘(𝑡)

𝑗,𝑘

 

(3) 

This approach effectively reduces noise while 

retaining important signal characteristics related to 

bearing faults. 

2. Normalization 

Normalization is applied to the denoised signal to 

standardize its amplitude, ensuring consistency for 

further analysis. This step is crucial to ensure that 

variations in signal amplitude do not affect the fault 

detection process. 

The denoised signal 𝑥𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑(𝑡) is standardized 

using the following formula: 

𝑠(𝑡) =
𝑥𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑(𝑡)−𝜇𝑥𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑

𝜎𝑥𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑

   (4) 

Where, 

 𝜇𝑥𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑
 is the mean of the denoised 

signal: 

𝜇𝑥𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑
=

1

𝑁
∑ 𝑥𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑(𝑡𝑖)

𝑁

𝑖=1

 

(5) 

𝜎𝑥𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑
 is the standard deviation of the denoised 

signal: 

𝜎𝑥𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑
= √

1

𝑁
∑(𝑥𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑(𝑡𝑖) − 𝜇𝑥𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑

)
2

𝑁

𝑖=1

 

(6) 

Here, 𝑁 represents the number of data points in the 

signal, and 𝑡𝑖 are the discrete time points. 

The resulting standardized signal 𝑠(𝑡) is now ready 

for further analysis, ensuring that the subsequent 

steps focus on detecting fault-related features rather 

than being biased by variations in signal amplitude. 

B. Kurtogram Analysis 

In this paper, Kurtogram analysis is employed as a 

crucial technique for detecting transient or non-

Gaussian behavior in vibration signals from rolling 

element bearings, which can indicate underlying 

faults. The Kurtogram visualizes kurtosis values 

across various frequency bands and scales, allowing 

for the precise identification of fault-related signals 

embedded within noise. 

1. Short-Time Fourier Transform (STFT) 

To create the Kurtogram, the Short-Time Fourier 

Transform (STFT) is applied to the preprocessed 

signal 𝑠(𝑡). This method provides a detailed time-

frequency representation of the signal, which is 

essential for analyzing the non-stationary 

characteristics of bearing fault signals. 

The STFT of the signal 𝑠(𝑡) is calculated using the 

following equation: 

𝑆(𝑡, 𝑓) = ∫ 𝑠(𝜏)𝜔(𝑡 − 𝜏)𝑒−𝑗2𝜋𝑓𝜏𝑑𝜏
∞

−∞
         (7) 

Where: 

 𝑆(𝑡, 𝑓) represents the STFT of the signal at 

time 𝑡 and frequency 𝑓, 

 𝑠(𝜏) is the input signal, 

 𝜔(𝑡 − 𝜏) is the window function centered 

at time 𝑡, specifically a Hamming window, 

which is chosen for its effective balance 

between time and frequency resolution. 

By sliding the window 𝜔(𝑡 − 𝜏) across the entire 

signal, the signal is segmented into short intervals. 

Each segment undergoes a Fourier transform, 

resulting in a time-frequency map 𝑆(𝑡, 𝑓). This map 

is crucial for identifying frequency components that 

vary over time, which is essential for detecting the 

non-stationary characteristics of bearing faults. 

2. Calculation of Kurtosis 

After applying the STFT, the kurtosis 𝜅(𝑓) for each 

frequency band is calculated to measure the 

"peakedness" of the signal distribution. This step is 

focused on identifying sharp transients or impulsive 

features, which are typical indicators of bearing 

faults. 

Kurtosis 𝜅(𝑓) is calculated using the following 

formula: 

𝜅(𝑓) =
1

𝑁
∑ (𝑆(𝑡𝑛,𝑓)−𝜇𝑆)4𝑁

𝑛=1

(
1

𝑁
∑ (𝑆(𝑡𝑛,𝑓)−𝜇𝑆)2𝑁

𝑛=1 )
2     (8) 

Where: 

 𝑆(𝑡𝑛, 𝑓) denotes the STFT magnitude at 

frequency 𝑓 and time 𝑡𝑛, 

 𝜇𝑆 is the mean value of 𝑆(𝑡𝑛, 𝑓) across the 

time window, calculated as: 

𝜇𝑆 =
1

𝑁
∑ 𝑆(𝑡𝑛, 𝑓)

𝑁

𝑛=1

 

(9) 

 𝑁 represents the number of time samples 

within the window. 

This kurtosis calculation is applied across sliding 

windows on the STFT output, targeting the detection 
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of non-Gaussian features in the signal. High kurtosis 

values are indicative of impulsive, fault-related 

events characterized by high amplitude and short 

duration, which are easily identifiable through 

elevated kurtosis. 

3. Construction and Interpretation of the 

Kurtogram 

After computing the kurtosis values for all 

frequency bands, the Kurtogram is constructed by 

plotting these values against frequency. The 

resulting Kurtogram visually represents the kurtosis 

distribution across different frequency bands and 

scales, helping to identify specific frequencies 

where transient events occur. 

Kurtogram Construction: The Kurtogram plots the 

kurtosis values 𝜅(𝑓) on a two-dimensional plane, 

with the x-axis representing frequency and the y-

axis representing kurtosis. Peaks in this plot 

correspond to frequency bands with high kurtosis, 

suggesting the presence of faults. 

Kurtogram Interpretation: Interpreting the 

Kurtogram involves identifying significant peaks, 

which indicate frequencies exhibiting pronounced 

transient or non-Gaussian behavior. These peaks are 

directly associated with potential bearing faults, 

such as spalls, cracks, or other defects in the rolling 

elements or races. By focusing on these peaks, fault-

related signals can be isolated from surrounding 

noise, leading to more accurate fault diagnosis. 

C. Spectral Kurtosis Computation 

In the proposed work, the computation of Spectral 

Kurtosis (SK) is a critical step aimed at identifying 

non-Gaussian components within the vibration 

signals of rolling element bearings. This step 

specifically targets the detection of transient events 

that are often indicative of bearing faults. The 

methodology employs Spectral Kurtosis to 

distinguish frequency bands that contain fault-

related transients from those dominated by Gaussian 

noise. 

1. Fourier Transform of the Preprocessed Signal 

The starting point for Spectral Kurtosis computation 

is the preprocessed signal 𝑠(𝑡), which has been 

denoised and normalized in the earlier stages of the 

methodology. To analyze the frequency content of 

𝑠(𝑡), we apply the Fourier Transform, which 

converts the time-domain signal into its frequency-

domain representation: 

𝑋(𝑓) = ∫ 𝑠(𝑡)𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡
∞

−∞
 (10) 

Where 𝑋(𝑓) represents the complex spectrum of the 

signal at frequency 𝑓. This transformation is crucial 

because it allows us to examine how the energy of 

the signal is distributed across different frequencies, 

which is key to identifying the presence of fault-

related transients. 

2. Computation of Spectral Kurtosis 

The Spectral Kurtosis 𝑆𝐾(𝑓) at each frequency 𝑓 is 

then computed using the following formula: 

𝑆𝐾(𝑓) =
𝐸[|𝑋(𝑓)|4]

(𝐸[|𝑋(𝑓)|2])2 − 2     (11) 

In this expression: 

 𝐸[|𝑋(𝑓)|2] is the expected value of the 

squared magnitude of the Fourier 

transform, representing the power spectral 

density at frequency 𝑓. 

 𝐸[|𝑋(𝑓)|4] is the fourth-order moment of 

𝑋(𝑓), which captures the extremity of 

variations in the signal's energy at that 

frequency, highlighting the presence of 

sharp transients or non-Gaussian behavior. 

The term −2 is subtracted to adjust the kurtosis so 

that a purely Gaussian process would have a Spectral 

Kurtosis of zero. Higher values of 𝑆𝐾(𝑓) indicate a 

higher likelihood of transient, non-Gaussian events, 

which are typically associated with bearing faults. 

3. Application and Interpretation in the Research 

Context 

In the context of this research, the computed 

Spectral Kurtosis values 𝑆𝐾(𝑓) serve as a criterion 

for identifying the most informative frequency 

bands. The goal is to isolate those bands that contain 

significant fault-related transients, which are often 

masked by other, stronger signals from the 

machine's normal operation. The process can be 

summarized in the following steps: 

Segmentation: The signal 𝑠(𝑡) is divided into 

overlapping segments 𝑠𝑘(𝑡) to ensure that transient 

events are not overlooked. For each segment 𝑘, the 

Fourier transform 𝑋𝑘(𝑓) is calculated as: 

𝑋𝑘(𝑓) = ∫ 𝑠𝑘(𝑡)𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡
𝑡𝑘+𝑇

𝑡𝑘
           (12) 

Where 𝑡𝑘 denotes the start time of the 𝑘𝑡ℎ segment, 

and 𝑇 is the segment length. 

Averaging: To obtain a stable estimate of 𝑆𝐾(𝑓), 

the Spectral Kurtosis is averaged over all segments: 

𝑆𝐾(𝑓) =
1

𝐾
∑ [

|𝑋𝑘(𝑓)|4

(
1

𝐾
∑ |𝑋𝑘(𝑓)|2𝐾

𝑘=1 )
− 2]𝐾

𝑘=1  

    (13) 

Here, 𝐾 is the total number of segments. This 

averaging process mitigates the impact of random 

noise, ensuring that the resulting 𝑆𝐾(𝑓) values 

accurately reflect the presence of fault-related 

transients. 

Frequency Band Identification: Frequency bands 

with high 𝑆𝐾(𝑓) values are identified as potential 

candidates for containing fault-related signals. 
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These bands are then prioritized in the subsequent 

analysis, particularly in the optimal band selection 

stage. 

The application of Spectral Kurtosis in this paper is 

integral to enhancing the accuracy of fault detection. 

By focusing on non-Gaussian behavior, which is 

often indicative of faults, the methodology reduces 

the likelihood of false positives and improves the 

detection of subtle, early-stage faults that might 

otherwise be missed. This step ensures that only the 

most relevant frequency bands are considered for 

further analysis, leading to a more targeted and 

effective diagnostic process. 

D. Optimal Band Selection 

In this proposed methodology, the optimal band 

selection integrates insights from Kurtogram 

analysis and Spectral Kurtosis computation to 

isolate the most informative frequency bands for 

detecting rolling element bearing faults. This 

process aims to enhance fault detection accuracy by 

focusing on frequency bands that are most likely to 

contain fault-related signals, thus minimizing the 

impact of masking noise from other machine 

components. The optimal band selection is 

performed in two main stages: evaluating band 

significance and applying band-pass filtering. 

1. Band Selection Criteria 

The proposed methodology for optimal band 

selection integrates Kurtogram analysis and Spectral 

Kurtosis to isolate the most relevant frequency 

bands for fault detection in rolling element bearings. 

This approach ensures that the selected frequency 

bands emphasize fault-related signals while 

minimizing the impact of masking noise. The 

optimal band selection involves evaluating band 

significance and applying band-pass filtering. 

Kurtosis Maximization: The Kurtogram, generated 

from the Short-Time Fourier Transform (STFT) of 

the preprocessed signal 𝑠(𝑡), is used to identify 

frequency bands exhibiting high kurtosis values. 

Kurtosis 𝜅(𝑓) is computed for each frequency band 

to detect transient features indicative of faults. 

Bands with the highest kurtosis values are 

considered significant for containing fault-related 

transients. 

Spectral Kurtosis Significance: Spectral Kurtosis 

(SK) is calculated for each frequency band [𝑓1, 𝑓2] to 

measure the deviation of the signal from Gaussian 

behavior. Higher SK values indicate the presence of 

non-Gaussian components, suggesting that these 

frequency bands are more likely to contain fault-

related signals. 

Integration of Kurtosis and Spectral Kurtosis: The 

optimal frequency band [𝑓1, 𝑓2] is determined by 

maximizing the product of kurtosis 𝜅(𝑓) and 

Spectral Kurtosis 𝑆𝐾(𝑓): 

[𝑓1, 𝑓2] = arg max
𝑓

{𝜅(𝑓) ⋅ 𝑆𝐾(𝑓)}     (14) 

This criterion ensures that the selected frequency 

band exhibits both strong transient features and 

significant non-Gaussian behavior, enhancing the 

likelihood of detecting fault-related signals while 

minimizing noise interference. 

2. Band-Pass Filtering 

Following the identification of the optimal 

frequency band [𝑓1, 𝑓2], a band-pass filter is applied 

to isolate this band from the preprocessed signal 

𝑠(𝑡). The band-pass filter operation is defined as: 

𝑠𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑(𝑡) = BandPass(𝑠(𝑡), 𝑓1, 𝑓2) 

      (15) 

Where BandPass(𝑠(𝑡), 𝑓1, 𝑓2) denotes the 

application of a band-pass filter that retains 

frequency components within the range [𝑓1, 𝑓2] and 

attenuates others. The resulting filtered signal 

𝑠𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑(𝑡) emphasizes the frequency band where 

fault-related information is expected to be most 

prominent. 

The methodology for optimal band selection 

involves: 

 Kurtosis Analysis: Identifying frequency 

bands with high kurtosis to capture 

transient fault features. 

 Spectral Kurtosis Assessment: Evaluating 

frequency bands for non-Gaussian 

behavior to confirm the presence of fault-

related signals. 

 Combining Metrics: Selecting the 

frequency band [𝑓1, 𝑓2] that maximizes the 

product of kurtosis and Spectral Kurtosis. 

 Filtering: Applying a band-pass filter to 

isolate the identified frequency band for 

focused analysis. 

This approach ensures that the most relevant 

frequency bands are selected, leading to improved 

fault detection and diagnosis capabilities. 

E. Fault Detection and Diagnosis 

In this research work, fault detection and diagnosis 

are performed using Envelope Spectrum Analysis on 

the filtered signal. This stage is designed to identify 

characteristic fault frequencies, which are indicative 

of defects in rolling element bearings. The 

methodology includes computing the envelope of 

the filtered signal and analyzing its spectrum to 

detect fault-specific signatures. 
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Envelope Spectrum Analysis is utilized to reveal 

characteristic fault frequencies hidden within the 

noise and other signal components. This technique 

is particularly effective for detecting faults such as 

spalls, cracks, and other anomalies in rolling 

element bearings by analyzing the amplitude 

modulation of the signal. 

1. Envelope Extraction 

The envelope of the filtered signal 𝑠𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑(𝑡) is 

computed using the Hilbert transform. The Hilbert 

transform provides a method to obtain the analytic 

signal 𝑠𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐(𝑡) from which the envelope can be 

derived. 

The analytic signal 𝑠𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐(𝑡) is given by: 

𝑠𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐(𝑡) = 𝑠𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑(𝑡) + 𝑗. ℋ{𝑠𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑(𝑡)} 

  (16) 

Where ℋ{⋅} denotes the Hilbert transform. The 

envelope 𝐸(𝑡) is then computed as the magnitude of 

the analytic signal: 

𝐸(𝑡) = |𝑠𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐(𝑡)|        (17) 

This envelope 𝐸(𝑡) emphasizes the modulation 

patterns in the signal, highlighting fault-related 

features that are modulated at characteristic fault 

frequencies. 

2. Envelope Spectrum Computation 

The Fourier transform of the envelope signal 𝐸(𝑡) 

yields the envelope spectrum 𝐸(𝑓). This spectrum 

provides a frequency-domain representation of the 

modulating components in the signal. 

The envelope spectrum is computed as: 

𝐸(𝑓) = ℱ{𝐸(𝑡)}          (18) 

Where ℱ{⋅} denotes the Fourier transform operation. 

The resulting spectrum 𝐸(𝑓) reveals peaks at 

frequencies corresponding to fault-related 

modulation. 

3. Fault Frequency Identification 

The envelope spectrum 𝐸(𝑓) is analyzed to identify 

significant peaks, which correspond to characteristic 

fault frequencies. These frequencies are associated 

with specific defects in rolling element bearings, 

such as: 

 Outer Race Fault Frequency:  

𝑓𝑜𝑢𝑡𝑒𝑟 =
𝑁𝑟𝑎𝑐𝑒

2
⋅ 𝑓𝑟𝑝𝑚       (19) 

 Inner Race Fault Frequency:  

𝑓𝑖𝑛𝑛𝑒𝑟 =
𝑁𝑟𝑎𝑐𝑒−1

2
⋅ 𝑓𝑟𝑝𝑚             (20) 

 Rolling Element Fault Frequency:   

𝑓𝑟𝑜𝑙𝑙𝑖𝑛𝑔 =
𝑁𝑟𝑜𝑙𝑙𝑖𝑛𝑔

2
⋅ 𝑓𝑟𝑝𝑚             (21) 

 Cage Fault Frequency: 

𝑓𝑐𝑎𝑔𝑒 =
𝑁𝑐𝑎𝑔𝑒

2
⋅ 𝑓𝑟𝑝𝑚                     (22) 

Where 𝑁𝑟𝑎𝑐𝑒, 𝑁𝑟𝑜𝑙𝑙𝑖𝑛𝑔, and 𝑁𝑐𝑎𝑔𝑒 are the 

number of rolling elements, races, and cage 

respectively, and 𝑓𝑟𝑝𝑚 is the rotational 

frequency of the bearing. 

4. Fault Diagnosis 

The detected fault frequencies are compared with 

known fault signatures to diagnose the type and 

severity of the fault. This involves: 

 Matching Peaks: Comparing the peaks in 

𝐸(𝑓) with known fault frequencies to 

identify the type of defect. 

 Amplitude Analysis: Evaluating the 

amplitude of the peaks to assess the 

severity of the fault. 

By correlating the envelope spectrum peaks with 

theoretical fault frequencies and amplitudes, the 

fault type and severity are determined, facilitating 

accurate diagnosis of rolling element bearing 

conditions. 

This methodology enhances the capability to 

accurately detect and diagnose faults in rolling 

element bearings, even in the presence of masking 

noise. 

F. Classification for Fault Diagnosis 

In addition to Envelope Spectrum Analysis, a simple 

classifier based on the log ratio of BPFI Amplitude 

to BPFO Amplitude is employed to enhance fault 

diagnosis. This classifier is designed to classify the 

type of bearing fault based on the log ratio feature 

derived from the vibration signals. 

1. Feature Extraction for Classification 

The log ratio feature is computed as: 

𝐼𝑂𝐿𝑜𝑔𝑅𝑎𝑡𝑖𝑜 = log (
𝐵𝑃𝐹𝐼 𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒

𝐵𝑃𝐹𝑂 𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒
)       (23) 

This feature is derived from the amplitude values 

obtained from the training and test datasets. 

2. Classifier Development and Validation 

A simple rule-based classifier is used, with 

thresholds determined from the training data: 

 If 𝐼𝑂𝐿𝑜𝑔𝑅𝑎𝑡𝑖𝑜 ≤ −1.5, classify as "Outer 

Race Fault." 

 If −1.5 < 𝐼𝑂𝐿𝑜𝑔𝑅𝑎𝑡𝑖𝑜 ≤ 0.5, classify as 

"Normal." 

 If 𝐼𝑂𝐿𝑜𝑔𝑅𝑎𝑡𝑖𝑜 > 0.5, classify as "Inner 

Race Fault." 

The performance of the classifier is validated using 

test data. Histograms of the log ratio feature for both 

training and test datasets are compared, showing 

consistent distributions and indicating effective 

generalization of the classifier. 

3. Classification Results 

The classifier shows perfect accuracy on the test 

data, demonstrating that the log ratio feature 
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effectively distinguishes between different fault 

types. While this simple approach provides robust 

results, future work may involve more sophisticated 

classifiers by incorporating additional features and 

using advanced machine learning techniques to 

further enhance fault diagnosis capabilities. 

 

IV. SIMULATION RESULTS 
 

A. Test Dataset 

The test dataset used for validation consists of six 

files with varied bearing conditions: 

 Normal Condition Data: 1 dataset 

representing fault-free bearings. 

 Inner Race Fault Data: 2 datasets featuring 

faults in the inner race. 

 Outer Race Fault Data: 3 datasets 

showcasing faults in the outer race. 

This dataset [16] is processed to include additional 

features like BPFI Amplitude and BPFO Amplitude. 

The data is read, processed to extract relevant 

features, and assembled into a feature table for 

thorough evaluation of the classifier's performance. 

This comprehensive validation ensures the 

classifier's effectiveness across different fault 

scenarios and normal conditions. 

B. Results  

 
Figure 2: Effect of Bandpass Filtering on Signal Kurtosis and 

Envelope Spectrum 
 

Figure 2 demonstrates the impact of bandpass 

filtering on the signal's kurtosis and the retrieval of 

modulated amplitude associated with an outer race 

fault. Top subplot displays the raw vibration signal 

and its envelope before filtering. The plot includes 

the raw signal and its envelope, with the kurtosis 

value indicated. This subplot illustrates the original 

characteristics of the signal and its envelope before 

any preprocessing. Bottom subplot shows the same 

signal after applying a bandpass filter, designed 

based on the kurtogram's optimal frequency band. 

The plot includes the filtered signal and its envelope, 

along with the updated kurtosis value. The 

enhancement in kurtosis indicates improved 

detection of the fault signature. The comparison 

highlights how bandpass filtering enhances the 

kurtosis of the signal, making the modulated 

amplitude of the fault more prominent and thus 

improving the sensitivity of envelope spectrum 

analysis for fault diagnosis. 

 
Figure 3: Envelope Spectrum of Bandpass Filtered Signal for 

Outer Race Fault 

Figure 3 illustrates the frequency domain 

representation of the envelope spectrum after 

applying bandpass filtering to the raw signal, 

specifically for an outer race fault. The plot shows 

the envelope spectrum of the bandpass filtered 

signal. It displays the peak amplitude of the 

envelope signal against frequency, with a focus on 

frequencies up to 1000 Hz. The vertical lines 

indicate the BPFO and its harmonics. The figure 

demonstrates how bandpass filtering, guided by 

kurtogram and spectral kurtosis analysis, enhances 

the detection of fault-related features. The clear 

visibility of peaks at BPFO and its harmonics 

confirms the effectiveness of the preprocessing steps 

in isolating fault signatures from noise. 

 
Figure 4: Feature Visualization and Histogram of Log Ratio 
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Figure 4 displays a scatter plot of BPFI Amplitude 

versus BPFO Amplitude for various fault types, 

showing how these features differentiate between 

"Inner Race Fault," "Outer Race Fault," and 

"Normal" conditions. The plot reveals distinct 

clusters for each fault type, indicating that these 

amplitude features can effectively separate fault 

categories. To further analyze the discriminative 

power of these features, a new feature—the log ratio 

of BPFI to BPFO Amplitude—is introduced. The 

accompanying histogram visualizes the distribution 

of this log ratio across different fault types, 

highlighting its potential to enhance fault 

classification by capturing the relative strength of 

the BPFI and BPFO signals. 

 
Figure 5: Histogram of Log Ratio Feature for Fault 

Classification 

 

Figure 5 presents histograms of the log ratio of BPFI 

Amplitude to BPFO Amplitude, grouped by 

different fault types: "Inner Race Fault," "Outer 

Race Fault," and "Normal." The histograms reveal 

distinct distributions for each fault category, 

indicating that the log ratio is a useful feature for 

distinguishing between bearing conditions. A 

classification boundary is illustrated with a dashed 

vertical line at log (
𝐵𝑃𝐹𝐼 𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒

𝐵𝑃𝐹𝑂 𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 
) = -1.5 and 0.5, 

showing how the log ratio can be used to classify the 

fault type. Specifically, values ≤ -1.5 suggest an 

outer race fault, values between -1.5 and 0.5 indicate 

a normal condition, and values > 0.5 are associated 

with an inner race fault. This visualization 

demonstrates the effectiveness of the log ratio 

feature for bearing fault diagnosis. 

Figure 6 presents histograms comparing the log ratio 

of BPFI Amplitude to BPFO Amplitude between 

training and test datasets for three bearing 

conditions: "Inner Race Fault," "Outer Race Fault," 

and "Normal." The histograms illustrate the 

distribution of the log ratio for each condition across 

both datasets, with training data shown in larger bins 

(0.5) and test data in smaller bins (0.1). The dashed 

vertical lines represent the classification boundaries 

used for fault diagnosis. The consistent distributions 

between training and test data indicate that the 

classifier derived from the log ratio feature 

effectively generalizes to unseen test data. The 

perfect accuracy of the naive classifier suggests that 

this simple feature-based approach is highly 

effective for fault detection in the given test 

scenarios. Further refinement and sophistication in 

classification could be achieved by incorporating 

additional features and advanced techniques. 

 
Figure 6: Comparison of Log Ratio Distribution between 

Training and Test Data for Bearing Fault Classification 

 

V. CONCLUSION 

The methodology developed in this paper marks a 

significant advancement in rolling element bearing 

fault diagnosis by effectively addressing the 

challenges posed by masking signals from other 

machinery components. The approach begins with 

meticulous signal preprocessing, employing wavelet 

transform and normalization to ensure data 

cleanliness and standardization, which are critical 

for accurate fault detection. This preprocessing step 

removes noise and normalizes signal amplitude, 

providing a solid foundation for subsequent 

analysis. 

Following preprocessing, Kurtogram analysis 

reveals transient and non-Gaussian features within 

the signal, which are indicative of bearing faults. By 

utilizing Short-Time Fourier Transform (STFT) to 

compute kurtosis, the analysis highlights impulsive 

characteristics often associated with faults. Spectral 

Kurtosis further refines the focus on relevant 

frequency bands by emphasizing significant non-

Gaussian behavior, isolating the most informative 

parts of the signal for detailed analysis. 
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The methodology excels in selecting optimal 

frequency bands through a dual evaluation of 

kurtosis and spectral kurtosis, enhancing fault 

detection precision. Band-pass filtering isolates 

these critical frequency components, making them 

more prominent for subsequent analysis. Envelope 

Spectrum Analysis is then used to extract fault-

specific frequencies from the filtered signal, 

enabling accurate diagnosis of bearing conditions. 

The introduction of a rule-based classifier, which 

uses the log ratio of BPFI to BPFO amplitudes, 

provides a simple yet effective method for fault 

classification. The classifier’s validation with test 

data, showing consistent results and perfect 

accuracy, underscores the efficacy of combining 

traditional signal processing techniques with a 

straightforward classification method. This 

approach not only improves diagnostic accuracy but 

also establishes a precedent for integrating advanced 

signal processing with effective classification 

methods to tackle complex fault diagnosis 

challenges. 

Future research should explore the inclusion of 

additional features and the application of more 

sophisticated machine learning algorithms to further 

enhance classification performance. Additionally, 

efforts to increase the robustness of the classifier and 

expand the methodology's applicability to a wider 

range of fault types and operational conditions are 

recommended. This work lays a solid foundation for 

advancing fault diagnosis in rolling element 

bearings, with potential for significant 

improvements through further refinements and 

innovations. 
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