

The Synergistic Convergence of Generative AI, Evolutionary Computing, and Edge Intelligence: A Unified Framework for Next-Generation Financial Systems

Dr. B. Suresh Babu
Associate Professor

Department of Electronics and Communication Engineering
Viswam Engineering College, Madanappale, India
sureshdecs10@gmail.com

Abstract – This detailed paper is a synthesis of three paradigm shifts in technology, including Generative Artificial Intelligence (GenAI), Evolutionary Strategies (ES) of optimization, and Internet of Things (IoT)-enabled edge computing, to provide a conceptual framework that aligns and enables the transformation of financial services. The convergence between these areas is what makes them self-optimizing, adaptive, and generative in a financial ecosystem, and we establish the idea through a series of personal forays into each of them. GenAI delivers creative personalized products, synthetic data generation and ES delivers powerful hyperparameter and architectural optimization of executable financial models and the IoT-edge networks delivers contextual real-time data of the physical economy. We consider applications consisting of dynamically optimized edges deployed GenAI chatbots to respond to customer queries, evolutionary search to find the best hybrid financial model using the information of IoT sensors and market feeds, as well as using generative simulation to simulate complex financial situations to test their stress reactions. The framework considers the major issues such as the complexity of the system, distributed networks security, distributed networks computational performance and ethical control of independent financial agents. Using a highly diverse background of work in closely related areas as exemplified by radiomics in the healthcare system to resource allocation in VANETs we infer commonalities and new areas

of integration. The paper concludes that this triple convergence is not just an evolutionary step of progress but a complete overhaul of the architecture of autonomous, resilient and hyper-personalized financial systems, and mapping a responsible innovation pathway that puts the possibilities of revolution on the scale of the safeguards required.

Keywords – Generative AI, Evolutionary Computing, Edge Computing, Financial Technology, Autonomous Systems, Synthetic Data, Hyperparameter Optimization, Distributed Intelligence, Convergence Technology.

I. INTRODUCTION

The digital transformation of the financial sector is also changing to a less standalone technological application and a more integrated, smart system. Considering three separate and complementary streams of technologies present transformative potentials individually, Generative AI (GenAI) to create content and simulate (Puchakayala, 2024); Evolutionary Strategies (ES) to optimise complex models robustly (Shalini et al., 2024); and IoT-edge computing to acquire and process real-time data in financial terms. Nevertheless, their ultimate disruptive nature is brought about by strategic convergence (Ghori, 2019; Ghori, 2021).

This paper hypothesizes that the combination of these paradigms can prove useful in overcoming some inherent shortcomings of existing financial systems: the inflexibility of rule-based automation,

International Journal of Digital Application & Contemporary Research

Website: www.ijdacr.com (Volume 14, Issue 3, October 2025)

the sub-optimality of manually-parameterized models, and the time lag inherent in decision-making that is not tied to real-world contexts. Here, we build a cohesive system in which: (1) ES keeps optimising the architectures and parameters of both discriminative and generative models; (2) GenAI models get optimised and hence generate insights, synthetic data and customised interfaces; and (3) IoT-edge networks introduce the real-time and multimodal data stream and decentralised compute fabric to be deployed. This forms a virtuous undertaking of adapting and value creation (Puchakayala, 2024; Ghule et al., 2024).

II. FOUNDATIONAL PILLARS AND THEIR INTERCONNECTIONS

2.1. Generative AI: The Creative Engine

- **Capabilities:** Creation of content (reports, advice, code), the artificial generation of data, simulated scenarios, and personal interaction.
- **Financial Role:** Transports fixed services to adaptive and dynamic experiences and creates a valuable training/testing data (Ghori, 2023).
- **Intersection with ES:** Generative model design (e.g. GANs, LLMs) and the many hyperparameters created afford enormous and complicated optimization spaces that can be readily explored using evolutionary search, well beyond grid or manual search.

2.2. Evolutionary Strategies: The Optimization Core

- **Capabilities:** Global optima search of complex, non-convex, high-dimensional, derivative-free population-based search.
- **Financial Role:** Finds the best model settings, trading and portfolio allocations. The quality of the domain-specific financial AI is the ability to search the Neural Architecture (Shalini and Patil, 2021; Sardesai & Gedam, 2025).
- **Intersection with IoT-Edge:** The assessment of fitness of ES can be diffused on edge nodes, doing local processing of data (e.g. branch-specific log of customer interactions, regional market feeds). This is

according to distributed processing requirements in the VANETs (Sheela et al., 2023) and in a cognitive radio network (Shalini et al., 2025).

2.3. IoT-Edge Computing: The Sensing and Execution Layer

- **Capabilities:** Real-time information acquisition, high-speed processing in a local area, and distributed intelligence (Sheela et al., 2022; Sheela & Shalini, 2024).
- **Financial Role:** Makes real financial services immediately and based on physical assets (inventory and vehicles) available by offering the ground-truth.
- **Intersection with GenAI:** Edge devices may contain lightweight, domain-specific generative models (e.g. instant, offline financial summarization or fraud explanation), as well as serve to provide rich contextual data to central GenAI models to provide deeper analysis.

III. THE UNIFIED FRAMEWORK: ARCHITECTURE AND DATA FLOW

The suggested system, called “GEO-Fin” (Generative-Evolutionary-Edge Financial), works in a constant multi-level cycle:

1. **Data Ingestion & Preprocessing Tier:** Heterogeneous data streams are brought together - structured market data, unstructured news/text, multimodal IoT data (images of warehouse drones, telematics data of insured cars, sensor data on smart infrastructure) (Ghori, 2019; Ghori, 2018). The quality of data is ensured by advanced preprocessing that may use GAN-based imputation methods (Bansal et al., 2025).
2. **Evolutionary Optimization Tier (The "Search Brain"):**
 - A population of financial AI model's candidates are controlled by an ES meta-controller. These candidates vary in:
 - **Architecture:** Decisions regarding uses of LLMs,

International Journal of Digital Application & Contemporary Research

Website: www.ijdacr.com (Volume 14, Issue 3, October 2025)

GANs, or hybrid models of particular tasks.

- **Hyperparameters:** Rates of learning, network structures, attention.
- **Data Fusion Strategies:** How to trade and integrate the usage data of IoT sensors and conventional financial feeds, a multimodal learning problem (Sardesai et al., 2025).
- **Fitness Evaluation:** Every candidate is deployed (in a simulated or on a shadow edge network) and optimized according to multi-objective fitness functions (e.g. Accuracy + Latency + Energy Efficiency + Fairness) (Ghule, 2025; Sardesai et al., 2025).

3. **Generative Execution Tier (The "Creative Cortex"):**

- The fittest designed models are implemented in the production scene.
- **GenAI Components:**
 - Produce live and customized investment reports.
 - Generate man-made yet natural market pressure conditions of risk models.
 - Power developed location-sensitive chatbots, which comprehend the location of a patient (through IOT) and financial background of a customer.
- These models are operated based on a hybrid cloud-edge fabric (Puchakayala, 2024; Ghori, 2023). More basic and commonly-used models (e.g., a local transaction anomaly explainer) are placed on edge devices, similar to the efficient hand-gesture recognition systems (Sheela et al., 2022), and the complex generators (e.g., a quarterly report synthesizer) are on the cloud.

4. **Feedback & Adaptation Loop:** The output of performance measures, new edge data structures and new financial occurrences are fed back to the Evolutionary Tier, which generates additional optimization cycles, allowing continuous adaptation - an instance of "Financial Lifelong Learning".

IV. CONVERGED APPLICATION SCENARIOS

4.1. Autonomous, Self-Optimizing Wealth Management

- **IoT-Edge:** Smart-wearables and smart home appliances offer real-time information when it comes to lifestyle and spending context of clients.
- **GenAI:** An automated LLM is a personalized model that creates unique investment commentary and education, and varies its communication approach.
- **ES:** Constantly optimizes the underlying portfolio allocation model (a neural network) and personalization parameters of the LLM through client engagement metrics (via edge interfaces) and portfolio performance (Ghule et al., 2024; Puchakayala, 2023).

4.2. Dynamic Risk Underwriting for Complex Assets

- **IoT-Edge:** Continuous monitoring of the insured commercial real estate or agricultural land is conducted using drones and ground sensors (LiDAR, cameras) as is the case in environmental monitoring systems (Shalini et al., 2024).
- **GenAI:** Multimodal GAN creates potential hazards in the future (e.g., flood damages visualizations, crop failures

International Journal of Digital Application & Contemporary Research

Website: www.ijdacr.com (Volume 14, Issue 3, October 2025)

prediction) with the help of sensor information and climate simulations.

- **ES:** Tunes the parameters of the GAN and the resultant risk-pricing model in order to achieve requirement of minimum loss ratio and competitive premiums (Ghori, 2021; Sheela et al., 2022).

4.3. High-Frequency Trading (HFT) with Evolutionary Generative Signals

- **IoT-Edge:** Edges feeds and satellite imagery data are processed at the edge in order to feeds direct market access that is low latency.
- **GenAI:** A smaller generative model is astute on a trading server node and generates a sketch of the short-term price movement by relying on real-time market microstructure.
- **ES:** Evolutionary search in real-time (micro-second scale) to optimize the ensemble weights of hundreds of such generative and predictive signals and adjust to new market regimes more quickly than more traditional facilities.

V. CRITICAL CHALLENGES IN CONVERGENCE

A combination of these three strong paradigms only intensifies their advantages as well as their risks:

1. **Exponential System Complexity:** The control of the relationships between changing models, generative elements and distributed edge nodes produce new software engineering and testing challenges.
2. **Security Attack Surface Expansion:** All of these elements present vulnerabilities: ES populations might be poisoned, GenAI models seem vulnerable to injection, and the networks based on IoT-edge networks are reachable physically. There is a need to have a zero-trust model of security that is holistic in nature.
3. **Ethical Governance and Accountability:** It is complicated when an edge-deployed self-evolved generative model makes an incorrect financial recommendation and the person to blame is

not clearly defined. The models of Responsible AI (Puchakayala, 2022) should be integrated on the architecture level.

4. **Computational and Energy Costs:** Continuous evolution, generative inference, process of edges could be combined with a workload that is enormous. The evolutionary optimization of the energy efficiency by itself becomes critical, in a case of green computing.
5. **Regulatory Compliance in a Fluid System:** A generative system that is changing and propelling constantly is a challenge inherent with regulators and their models of the world that are static. There is the need to have explainable evolution and audit logs of model generations which are immutable.

VI. CONCLUSION

The signs of active convergence of Generative AI, Evolutionary Strategies, and IoT-edge computing must be considered a breakthrough point in financial technology. Each one is highly endowed individually with powers of creativity, adaptation and pervasive sensing. They are built into the suggested GEO-Fin framework to allow the development of the genuinely independent, stable, and context-aware financial systems that can learn and develop in real-time. Such an adventure, though, requires an interdisciplinary approach to research, that of finance, computer science, and ethics, and an active governmental policy. The financial industry can safely script this convergence by using the experience of various disciplines, including, yet not limited to, healthcare diagnostics to network resource management to create the future that will not only be more productive and lucrative, but also more stable, integrated, and trustworthy.

The GEO-Fin framework provides many opportunities of research:

- **Neuromorphic Edge Computing:** Adopting lower power hardware based on bio-inspiration to execute evolved generative models at the edge.

International Journal of Digital Application & Contemporary Research
Website: www.ijdacr.com (Volume 14, Issue 3, October 2025)

- **Federated Evolutionary Learning:** Performing ES in decentralized banks that do not share raw data and achieve privacy and the gain of collective optimization.
- **Quantum-Enhanced Evolution for Finance:** Applications of quantum computing to evolve the process of searching large model spaces.
- **Generative AI for Financial System Resilience:** To simulate and prepare systemic financial crisis using evolved GenAI, including cascading effects across physical assets that are connected to the IoT.

REFERENCES

- [1] Bansal, A., Puchakayala, P. R. A., Suddala, S., Bansal, R., & Singhal, A. (2025, May). Missing Value Imputation using Spatio-Convolutional Generative Adversarial Imputation Network. In 2025 3rd International Conference on Data Science and Information System (ICDSIS) (pp. 1-6). IEEE.
- [2] Ghori, P. (2018). Anomaly detection in financial data using deep learning models. International Journal Of Engineering Sciences & Research Technology, 7(11), 192-203.
- [3] Ghori, P. (2019). Advancements in Machine Learning Techniques for Multivariate Time Series Forecasting in Electricity Demand. International Journal of New Practices in Management and Engineering, 8(01), 25-37. Retrieved from <https://ijnpme.org/index.php/IJNPME/article/view/220>
- [4] Ghori, P. (2021). Enhancing disaster management in India through artificial intelligence: A strategic approach. International Journal of Engineering Sciences & Research Technology, 10(10), 40-54.
- [5] Ghori, P. (2023). LLM-based fraud detection in financial transactions: A defense framework against adversarial attacks. International Journal of Engineering Sciences & Research Technology, 10(10), 40-54.
- [6] Ghule, P. A. (2025). AI in Behavioral Economics and Decision-Making Analysis. Journal For Research In Applied Sciences And Biotechnology, Учредители: Stallion Publication, 4(1), 124-31.
- [7] Ghule, P. A., Sardesai, S., & Walhekar, R. (2024, February). An Extensive Investigation of Supervised Machine Learning (SML) Procedures Aimed at Learners' Performance Forecast with Learning Analytics. In International Conference on Current Advancements in Machine Learning (pp. 63-81). Cham: Springer Nature Switzerland.
- [8] Puchakayala, P. R. A. (2022). Responsible AI Ensuring Ethical, Transparent, and Accountable Artificial Intelligence Systems. Journal of Computational Analysis and Applications, 30(1).
- [9] Puchakayala, P. R. A. (2024). Generative Artificial Intelligence Applications in Banking and Finance Sector. Master's thesis, University of California, Berkeley, CA, USA.
- [10] Sardesai, S., & Gedam, R. (2025, February). Hybrid EEG Signal Processing Framework for Driver Drowsiness Detection Using QWT, EMD, and Bayesian Optimized SVM. In 2025 3rd International Conference on Integrated Circuits and Communication Systems (ICICACS) (pp. 1-6). IEEE.
- [11] Sardesai, S., Kirange, Y. K., Ghori, P., & Mahalaxmi, U. S. B. K. (2025). Secure and intelligent financial data analysis using machine learning, fuzzy logic, and cryptography. Journal of Discrete Mathematical Sciences and Cryptography, 28(5-B), 2163-2173.
- [12] Shalini, S., & Patil, A. P. (2021). Obstacle-Aware Radio Propagation and Environmental Model for Hybrid Vehicular Ad hoc Network. In Inventive Computation and Information Technologies: Proceedings of ICICIT 2020 (pp. 513-528). Singapore: Springer Nature Singapore.

International Journal of Digital Application & Contemporary Research
Website: www.ijdacr.com (Volume 14, Issue 3, October 2025)

[13] Shalini, S., Gupta, A. K., Adavala, K. M., Siddiqui, A. T., Shinkre, R., Deshpande, P. P., & Pareek, M. (2024). Evolutionary strategies for parameter optimization in deep learning models. *International Journal of Intelligent Systems and Applications in Engineering*, 12(2S), 371–378.

[14] Shalini, S., Sree, K. M., Prajwal, M. H., Reddy, N. N., & Reddy, P. G. (2024, April). BIOWATCH: Detecting the Lake Pollution to Safeguard Biotic Life. In 2024 International Conference on Emerging Technologies in Computer Science for Interdisciplinary Applications (ICETCS) (pp. 1-6). IEEE.

[15] Shalini, S., Yadav, R., Fukey, L. N., Mulla, N., Misra, D. D., Chauhan, M., & Sambasivarao, L. V. (2025). Enhancing cognitive radio networks for education systems: A machine learning approach to optimized spectrum sensing in remote learning environments. *Journal of Infrastructure, Policy and Development*, 9(1), 10466. <https://doi.org/10.24294/jipd10466>

[16] Sheela, S., & Shalini, S. (2024). Prediction of cardiac disabilities in diabetic patients. In *Futuristic trends in network & communication technologies* (IIP Series, Vol. 3, Book 4, Part 2, Chapter 2, pp. 123–129). Integrated Intelligent Publication.

[17] Sheela, S., Nataraj, K. R., & Mallikarjunaswamy, S. (2023). A comprehensive exploration of resource allocation strategies within vehicle Ad-Hoc Networks. *Mechatron. Intell. Transp. Syst.*, 2(3), 169-190.

[18] Sheela, S., Nataraj, K. R., & Rekha, K. R. (2022, November). Design and Implementation of Hand Gesture for Various Applications. In *Proceedings of the International Conference on Cognitive and Intelligent Computing: ICCIC 2021*, Volume 1 (pp. 721-728). Singapore: Springer Nature Singapore.